Do you want to publish a course? Click here

Top-KAST: Top-K Always Sparse Training

119   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Sparse neural networks are becoming increasingly important as the field seeks to improve the performance of existing models by scaling them up, while simultaneously trying to reduce power consumption and computational footprint. Unfortunately, most existing methods for inducing performant sparse models still entail the instantiation of dense parameters, or dense gradients in the backward-pass, during training. For very large models this requirement can be prohibitive. In this work we propose Top-KAST, a method that preserves constant sparsity throughout training (in both the forward and backward-passes). We demonstrate the efficacy of our approach by showing that it performs comparably to or better than previous works when training models on the established ImageNet benchmark, whilst fully maintaining sparsity. In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling where the current best performing architectures tend to have tens of billions of parameters and scaling up does not yet seem to have saturated performance. Spar



rate research

Read More

The top-k operation, i.e., finding the k largest or smallest elements from a collection of scores, is an important model component, which is widely used in information retrieval, machine learning, and data mining. However, if the top-k operation is implemented in an algorithmic way, e.g., using bubble algorithm, the resulting model cannot be trained in an end-to-end way using prevalent gradient descent algorithms. This is because these implementations typically involve swapping indices, whose gradient cannot be computed. Moreover, the corresponding mapping from the input scores to the indicator vector of whether this element belongs to the top-k set is essentially discontinuous. To address the issue, we propose a smoothed approximation, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operator. Specifically, our SOFT top-k operator approximates the output of the top-k operation as the solution of an Entropic Optimal Transport (EOT) problem. The gradient of the SOFT operator can then be efficiently approximated based on the optimality conditions of EOT problem. We apply the proposed operator to the k-nearest neighbors and beam search algorithms, and demonstrate improved performance.
We consider the bandit problem of selecting $K$ out of $N$ arms at each time step. The reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among $binom{N}{K}$ options, making the action space large. To simplify the problem, existing works on combinatorial bandits {typically} assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-$K$ subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in $N$. Further, DART achieves a regret bound of $tilde{mathcal{O}}(Ksqrt{KNT})$ for a time horizon $T$, which matches the lower bound in bandit feedback up to a factor of $sqrt{log{2NT}}$. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments.
Being able to efficiently and accurately select the top-$k$ elements with differential privacy is an integral component of various private data analysis tasks. In this paper, we present the oneshot Laplace mechanism, which generalizes the well-known Report Noisy Max mechanism to reporting noisy top-$k$ elements. We show that the oneshot Laplace mechanism with a noise level of $widetilde{O}(sqrt{k}/eps)$ is approximately differentially private. Compared to the previous peeling approach of running Report Noisy Max $k$ times, the oneshot Laplace mechanism only adds noises and computes the top $k$ elements once, hence much more efficient for large $k$. In addition, our proof of privacy relies on a novel coupling technique that bypasses the use of composition theorems. Finally, we present a novel application of efficient top-$k$ selection in the classical problem of ranking from pairwise comparisons.
Distributed stochastic gradient descent (SGD) algorithms are widely deployed in training large-scale deep learning models, while the communication overhead among workers becomes the new system bottleneck. Recently proposed gradient sparsification techniques, especially Top-$k$ sparsification with error compensation (TopK-SGD), can significantly reduce the communication traffic without an obvious impact on the model accuracy. Some theoretical studies have been carried out to analyze the convergence property of TopK-SGD. However, existing studies do not dive into the details of Top-$k$ operator in gradient sparsification and use relaxed bounds (e.g., exact bound of Random-$k$) for analysis; hence the derived results cannot well describe the real convergence performance of TopK-SGD. To this end, we first study the gradient distributions of TopK-SGD during the training process through extensive experiments. We then theoretically derive a tighter bound for the Top-$k$ operator. Finally, we exploit the property of gradient distribution to propose an approximate top-$k$ selection algorithm, which is computing-efficient for GPUs, to improve the scaling efficiency of TopK-SGD by significantly reducing the computing overhead. Codes are available at: url{https://github.com/hclhkbu/GaussianK-SGD}.
Top-k query processing finds a list of k results that have largest scores w.r.t the user given query, with the assumption that all the k results are independent to each other. In practice, some of the top-k results returned can be very similar to each other. As a result some of the top-k results returned are redundant. In the literature, diversified top-k search has been studied to return k results that take both score and diversity into consideration. Most existing solutions on diversified top-k search assume that scores of all the search results are given, and some works solve the diversity problem on a specific problem and can hardly be extended to general cases. In this paper, we study the diversified top-k search problem. We define a general diversified top-k search problem that only considers the similarity of the search results themselves. We propose a framework, such that most existing solutions for top-k query processing can be extended easily to handle diversified top-k search, by simply applying three new functions, a sufficient stop condition sufficient(), a necessary stop condition necessary(), and an algorithm for diversified top-k search on the current set of generated results, div-search-current(). We propose three new algorithms, namely, div-astar, div-dp, and div-cut to solve the div-search-current() problem. div-astar is an A* based algorithm, div-dp is an algorithm that decomposes the results into components which are searched using div-astar independently and combined using dynamic programming. div-cut further decomposes the current set of generated results using cut points and combines the results using sophisticated operations. We conducted extensive performance studies using two real datasets, enwiki and reuters. Our div-cut algorithm finds the optimal solution for diversified top-k search problem in seconds even for k as large as 2,000.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا