Do you want to publish a course? Click here

A sparse $p_0$ model with covariates for directed networks

65   0   0.0 ( 0 )
 Added by Qiuping Wang
 Publication date 2021
and research's language is English
 Authors Qiuping Wang




Ask ChatGPT about the research

We are concerned here with unrestricted maximum likelihood estimation in a sparse $p_0$ model with covariates for directed networks. The model has a density parameter $ u$, a $2n$-dimensional node parameter $bs{eta}$ and a fixed dimensional regression coefficient $bs{gamma}$ of covariates. Previous studies focus on the restricted likelihood inference. When the number of nodes $n$ goes to infinity, we derive the $ell_infty$-error between the maximum likelihood estimator (MLE) $(widehat{bs{eta}}, widehat{bs{gamma}})$ and its true value $(bs{eta}, bs{gamma})$. They are $O_p( (log n/n)^{1/2} )$ for $widehat{bs{eta}}$ and $O_p( log n/n)$ for $widehat{bs{gamma}}$, up to an additional factor. This explains the asymptotic bias phenomenon in the asymptotic normality of $widehat{bs{gamma}}$ in cite{Yan-Jiang-Fienberg-Leng2018}. Further, we derive the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.



rate research

Read More

203 - MengXu , Qiuping Wang 2021
The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with the degree heterogeneity and covariates. However, it may cause information loss when it is applied in weighted networks. In this paper, we propose to use the Poisson distribution to model weighted directed networks, which admits the sparsity of networks, the degree heterogeneity and the homophily caused by covariates of nodes. We call it the emph{network Poisson model}. The model contains a density parameter $mu$, a $2n$-dimensional node parameter ${theta}$ and a fixed dimensional regression coefficient ${gamma}$ of covariates. Since the number of parameters increases with $n$, asymptotic theory is nonstandard. When the number $n$ of nodes goes to infinity, we establish the $ell_infty$-errors for the maximum likelihood estimators (MLEs), $hat{theta}$ and $hat{{gamma}}$, which are $O_p( (log n/n)^{1/2} )$ for $hat{theta}$ and $O_p( log n/n)$ for $hat{{gamma}}$, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings. ) for b{theta} and Op(log n/n) for b{gamma}, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.
The $p_0$ model is an exponential random graph model for directed networks with the bi-degree sequence as the exclusively sufficient statistic. It captures the network feature of degree heterogeneity. The consistency and asymptotic normality of a differentially private estimator of the parameter in the private $p_0$ model has been established. However, the $p_0$ model only focuses on binary edges. In many realistic networks, edges could be weighted, taking a set of finite discrete values. In this paper, we further show that the moment estimators of the parameters based on the differentially private bi-degree sequence in the weighted $p_0$ model are consistent and asymptotically normal. Numerical studies demonstrate our theoretical findings.
Holland and Leinhardt (1981) proposed a directed random graph model, the p1 model, to describe dyadic interactions in a social network. In previous work (Petrovic et al., 2010), we studied the algebraic properties of the p1 model and showed that it is a toric model specified by a multi-homogeneous ideal. We conducted an extensive study of the Markov bases for p1 that incorporate explicitly the constraint arising from multi-homogeneity. Here we consider the properties of the corresponding toric variety and relate them to the conditions for the existence of the maximum likelihood and extended maximum likelihood estimators or the model parameters. Our results are directly relevant to the estimation and conditional goodness-of-fit testing problems in p1 models.
In this article we study the existence and strong consistency of GEE estimators, when the generalized estimating functions are martingales with random coefficients. Furthermore, we characterize estimating functions which are asymptotically optimal.
Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the in-homogeneous random graph model with missing observations. Using the Stochastic Block Model as a parametric proxy, we bound the risk of the maximum likelihood estimator of network connections probabilities , and show that it is minimax optimal. When risk is measured in Frobenius norm, no estimator running in polynomial time has been shown to attain the minimax optimal rate of convergence for this problem. Thus, maximum likelihood estimation is of particular interest as computationally efficient approximations to it have been proposed in the literature and are often used in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا