Evaluation of cosmological models in $f(R, T)$ gravity in different dark energy scenario


Abstract in English

In present paper, we search the existence of dark energy scalar field models within in $f(R, T)$ gravity theory established by Harko et al. (Phys. Rev. D 84, 024020, 2011) in a flat FRW universe. The correspondence between scalar field models have been examined by employing new generalized dynamical cosmological term $ Lambda(t) $. In this regards, the best fit observational values of parameters from three distinct sets data are applied. To decide the solution to field equations, a scale factor $ a= left(sinh(beta t)right)^{1/n} $ has been considered, where $ beta$ & $n $ are constants. Here, we employ the recent ensues ($H_{0}=69.2$ and $q_{0}=-0.52)$ from (OHD+JLA) observation (Yu et al., Astrophys. J. 856, 3, 2018). Through the numerical estimation and graphical assessing of various cosmological parameters, it has been experienced that findings are comparable with kinematics and physical properties of universe and compatible with recent cosmological ensues. The dynamics and potentials of scalar fields are clarified in FRW scenario in the present model. Potentials reconstruction is highly reasonable and shows a periodic establishment and in agreement with latest observations.

Download