Do you want to publish a course? Click here

TabularNet: A Neural Network Architecture for Understanding Semantic Structures of Tabular Data

385   0   0.0 ( 0 )
 Added by Lun Du
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Tabular data are ubiquitous for the widespread applications of tables and hence have attracted the attention of researchers to extract underlying information. One of the critical problems in mining tabular data is how to understand their inherent semantic structures automatically. Existing studies typically adopt Convolutional Neural Network (CNN) to model the spatial information of tabular structures yet ignore more diverse relational information between cells, such as the hierarchical and paratactic relationships. To simultaneously extract spatial and relational information from tables, we propose a novel neural network architecture, TabularNet. The spatial encoder of TabularNet utilizes the row/column-level Pooling and the Bidirectional Gated Recurrent Unit (Bi-GRU) to capture statistical information and local positional correlation, respectively. For relational information, we design a new graph construction method based on the WordNet tree and adopt a Graph Convolutional Network (GCN) based encoder that focuses on the hierarchical and paratactic relationships between cells. Our neural network architecture can be a unified neural backbone for different understanding tasks and utilized in a multitask scenario. We conduct extensive experiments on three classification tasks with two real-world spreadsheet data sets, and the results demonstrate the effectiveness of our proposed TabularNet over state-of-the-art baselines.



rate research

Read More

Tabular data prediction (TDP) is one of the most popular industrial applications, and various methods have been designed to improve the prediction performance. However, existing works mainly focus on feature interactions and ignore sample relations, e.g., users with the same education level might have a similar ability to repay the debt. In this work, by explicitly and systematically modeling sample relations, we propose a novel framework TabGNN based on recently popular graph neural networks (GNN). Specifically, we firstly construct a multiplex graph to model the multifaceted sample relations, and then design a multiplex graph neural network to learn enhanced representation for each sample. To integrate TabGNN with the tabular solution in our company, we concatenate the learned embeddings and the original ones, which are then fed to prediction models inside the solution. Experiments on eleven TDP datasets from various domains, including classification and regression ones, show that TabGNN can consistently improve the performance compared to the tabular solution AutoFE in 4Paradigm.
Detecting semantic concept of columns in tabular data is of particular interest to many applications ranging from data integration, cleaning, search to feature engineering and model building in machine learning. Recently, several works have proposed supervised learning-based or heuristic pattern-based approaches to semantic type annotation. Both have shortcomings that prevent them from generalizing over a large number of concepts or examples. Many neural network based methods also present scalability issues. Additionally, none of the known methods works well for numerical data. We propose $C^2$, a column to concept mapper that is based on a maximum likelihood estimation approach through ensembles. It is able to effectively utilize vast amounts of, albeit somewhat noisy, openly available table corpora in addition to two popular knowledge graphs to perform effective and efficient concept prediction for structured data. We demonstrate the effectiveness of $C^2$ over available techniques on 9 datasets, the most comprehensive comparison on this topic so far.
471 - Yuanfei Luo , Hao Zhou , Weiwei Tu 2020
Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practical tabular data classification model based on deep neural network to provide accurate predictions. Various deep methods have been proposed and promising progress has been made. However, most of them use operations like neural network and factorization machines to fuse the embeddings of different features directly, and linearly combine the outputs of those operations to get the final prediction. As a result, the intra-field information and the non-linear interactions between those operations (e.g. neural network and factorization machines) are ignored. Intra-field information is the information that features inside each field belong to the same field. NON is proposed to take full advantage of intra-field information and non-linear interactions. It consists of three components: field-wise network at the bottom to capture the intra-field information, across field network in the middle to choose suitable operations data-drivenly, and operation fusion network on the top to fuse outputs of the chosen operations deeply. Extensive experiments on six real-world datasets demonstrate NON can outperform the state-of-the-art models significantly. Furthermore, both qualitative and quantitative study of the features in the embedding space show NON can capture intra-field information effectively.
This paper presents a novel approach to translating natural language questions to SQL queries for given tables, which meets three requirements as a real-world data analysis application: cross-domain, multilingualism and enabling quick-start. Our proposed approach consists of: (1) a novel data abstraction step before the parser to make parsing table-agnosticism; (2) a set of semantic rules for parsing abstracted data-analysis questions to intermediate logic forms as tree derivations to reduce the search space; (3) a neural-based model as a local scoring function on a span-based semantic parser for structured optimization and efficient inference. Experiments show that our approach outperforms state-of-the-art algorithms on a large open benchmark dataset WikiSQL. We also achieve promising results on a small dataset for more complex queries in both English and Chinese, which demonstrates our language expansion and quick-start ability.
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of the biggest problems that neural architecture search (NAS) confronts is that a large number of candidate neural architectures are required to train, using, for instance, reinforcement learning and evolutionary optimisation algorithms, at a vast computation cost. Even recent differentiable neural architecture search (DNAS) samples a small number of candidate neural architectures based on the probability distribution of learned architecture parameters to select the final neural architecture. To address this computational complexity issue, we introduce a novel emph{architecture parameterisation} based on scaled sigmoid function, and propose a general emph{Differentiable Neural Architecture Learning} (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks. Specifically, for stochastic supernets as well as conventional CNNs, we build a new channel-wise module layer with the architecture components controlled by a scaled sigmoid function. We train these neural network models from scratch. The network optimization is decoupled into the weight optimization and the architecture optimization. We address the non-convex optimization problem of neural architecture by the continuous scaled sigmoid method with convergence guarantees. Extensive experiments demonstrate our DNAL method delivers superior performance in terms of neural architecture search cost. The optimal networks learned by DNAL surpass those produced by the state-of-the-art methods on the benchmark CIFAR-10 and ImageNet-1K dataset in accuracy, model size and computational complexity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا