Layered architecture represents the software structure in the form of layers. Every element in the software is assigned to one of the layers such that the relationship amongst the elements is maintained. A set of design principles rules the process of construction of the layered architecture. Various statistical measures have been defined to check whether the layered architecture of a given software is following these design principles or not. In this paper, we redefine the measures of layered architecture based on the relationship between the software components. The measures check for the violations committed regarding the back calls, skip calls, and cyclic structures. Further, we also introduce a new measure to verify the logical separation amongst the layers. The systems current architecture is extracted from the source code and represented using a three-tier layered structure, which is the defacto standard architecture of Java applications. The redefined measures are applied to determine the conformance of layering principles in the system. We evaluate five different software systems for their architecture consistency. The results obtained on our redefined measures are compared to those obtained by applying the standard set of measures. A quantitative analysis of the proposed measures is performed, and we conclude that they can determine the consideration of layering principles followed during the development of a software system.