Do you want to publish a course? Click here

Making CNNs Interpretable by Building Dynamic Sequential Decision Forests with Top-down Hierarchy Learning

89   0   0.0 ( 0 )
 Added by Wei Shen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a generic model transfer scheme to make Convlutional Neural Networks (CNNs) interpretable, while maintaining their high classification accuracy. We achieve this by building a differentiable decision forest on top of CNNs, which enjoys two characteristics: 1) During training, the tree hierarchies of the forest are learned in a top-down manner under the guidance from the category semantics embedded in the pre-trained CNN weights; 2) During inference, a single decision tree is dynamically selected from the forest for each input sample, enabling the transferred model to make sequential decisions corresponding to the attributes shared by semantically-similar categories, rather than directly performing flat classification. We name the transferred model deep Dynamic Sequential Decision Forest (dDSDF). Experimental results show that dDSDF not only achieves higher classification accuracy than its conuterpart, i.e., the original CNN, but has much better interpretability, as qualitatively it has plausible hierarchies and quantitatively it leads to more precise saliency maps.



rate research

Read More

Decision forests are popular tools for classification and regression. These forests naturally produce proximity matrices measuring how often each pair of observations lies in the same leaf node. It has been demonstrated that these proximity matrices can be thought of as kernels, connecting the decision forest literature to the extensive kernel machine literature. While other kernels are known to have strong theoretical properties such as being characteristic, no similar result is available for any decision forest based kernel. In this manuscript,we prove that the decision forest induced proximity can be made characteristic, which can be used to yield a universally consistent statistic for testing independence. We demonstrate the performance of the induced kernel on a suite of 20 high-dimensional independence test settings. We also show how this learning kernel offers insights into relative feature importance. The decision forest induced kernel typically achieves substantially higher testing power than existing popular methods in statistical tests.
We introduce a unified probabilistic framework for solving sequential decision making problems ranging from Bayesian optimisation to contextual bandits and reinforcement learning. This is accomplished by a probabilistic model-based approach that explains observed data while capturing predictive uncertainty during the decision making process. Crucially, this probabilistic model is chosen to be a Meta-Learning system that allows learning from a distribution of related problems, allowing data efficient adaptation to a target task. As a suitable instantiation of this framework, we explore the use of Neural processes due to statistical and computational desiderata. We apply our framework to a broad range of problem domains, such as control problems, recommender systems and adversarial attacks on RL agents, demonstrating an efficient and general black-box learning approach.
Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.
239 - Wenjun Zeng , Yi Liu 2021
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seeing recommended content on each page can only return feedback as moving forward in the process or dropping from it until a termination state. We refer to this type of problems as sequential decision making in linear--flow. We propose to formulate the problem as an MDP with Bandits where Bandits are employed to model the transition probability matrix. At recommendation time, we use Thompson sampling (TS) to sample the transition probabilities and allocate the best series of actions with analytical solution through exact dynamic programming. The way that we formulate the problem allows us to leverage TSs efficiency in balancing exploration and exploitation and Bandits convenience in modeling actions incompatibility. In the simulation study, we observe the proposed MDP with Bandits algorithm outperforms Q-learning with $epsilon$-greedy and decreasing $epsilon$, independent Bandits, and interaction Bandits. We also find the proposed algorithms performance is the most robust to changes in the across-page interdependence strength.
Regret minimization has proved to be a versatile tool for tree-form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the players decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs -- even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restrictions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used -- for example, those in which only black-box access to the environment is available. We give the first, to our knowledge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i) -- and thus also (ii) -- is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encounters new decision points. We give an efficient algorithm that achieves $O(T^{3/4})$ regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algorithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا