Non-symmorphic symmetry and field-driven odd-parity pairing in CeRh$_2$As$_2$


Abstract in English

Recently, evidence has emerged for a field-induced even- to odd-parity superconducting phase transition in CeRh$_2$As$_2$ [S. Khim {it et al.}, arXiv:2101.09522]. Here we argue that the $P4/nmm$ non-symmorphic crystal structure of CeRh$_2$As$_2$ plays a central role in enabling this transition. Specifically, the non-symmorphic symmetries enforce an unusual spin structure near Brillouin zone boundaries that ensures large spin-orbit interactions in these regions of momentum space. This enables a high-temperature field-induced even- to odd-parity transition. We further provide an explicit illustration of the robustness of a field induced odd-parity state within a DFT-inspired model of the superconducting state that includes Fermi surfaces located about a Dirac line at the zone boundary and also about the zone center. Finally, we comment on the relevance of our results to superconducting FeSe, which also crystallizes in a $P4/nmm$ structure.

Download