Do you want to publish a course? Click here

Accelerating Inference for Sparse Extreme Multi-Label Ranking Trees

109   0   0.0 ( 0 )
 Added by Philip Etter
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Tree-based models underpin many modern semantic search engines and recommender systems due to their sub-linear inference times. In industrial applications, these models operate at extreme scales, where every bit of performance is critical. Memory constraints at extreme scales also require that models be sparse, hence tree-based models are often back-ended by sparse matrix algebra routines. However, there are currently no sparse matrix techniques specifically designed for the sparsity structure one encounters in tree-based models for extreme multi-label ranking/classification (XMR/XMC) problems. To address this issue, we present the masked sparse chunk multiplication (MSCM) technique, a sparse matrix technique specifically tailored to XMR trees. MSCM is easy to implement, embarrassingly parallelizable, and offers a significant performance boost to any existing tree inference pipeline at no cost. We perform a comprehensive study of MSCM applied to several different sparse inference schemes and benchmark our methods on a general purpose extreme multi-label ranking framework. We observe that MSCM gives consistently dramatic speedups across both the online and batch inference settings, single- and multi-threaded settings, and on many different tree models and datasets. To demonstrate its utility in industrial applications, we apply MSCM to an enterprise-scale semantic product search problem with 100 million products and achieve sub-millisecond latency of 0.88 ms per query on a single thread -- an 8x reduction in latency over vanilla inference techniques. The MSCM technique requires absolutely no sacrifices to model accuracy as it gives exactly the same results as standard sparse matrix techniques. Therefore, we believe that MSCM will enable users of XMR trees to save a substantial amount of compute resources in their inference pipelines at very little cost.

rate research

Read More

126 - Bingyu Wang , Li Chen , Wei Sun 2019
Extreme Multi-label classification (XML) is an important yet challenging machine learning task, that assigns to each instance its most relevant candidate labels from an extremely large label collection, where the numbers of labels, features and instances could be thousands or millions. XML is more and more on demand in the Internet industries, accompanied with the increasing business scale / scope and data accumulation. The extremely large label collections yield challenges such as computational complexity, inter-label dependency and noisy labeling. Many methods have been proposed to tackle these challenges, based on different mathematical formulations. In this paper, we propose a deep learning XML method, with a word-vector-based self-attention, followed by a ranking-based AutoEncoder architecture. The proposed method has three major advantages: 1) the autoencoder simultaneously considers the inter-label dependencies and the feature-label dependencies, by projecting labels and features onto a common embedding space; 2) the ranking loss not only improves the training efficiency and accuracy but also can be extended to handle noisy labeled data; 3) the efficient attention mechanism improves feature representation by highlighting feature importance. Experimental results on benchmark datasets show the proposed method is competitive to state-of-the-art methods.
Extreme multi-label classification (XMC) aims to learn a model that can tag data points with a subset of relevant labels from an extremely large label set. Real world e-commerce applications like personalized recommendations and product advertising can be formulated as XMC problems, where the objective is to predict for a user a small subset of items from a catalog of several million products. For such applications, a common approach is to organize these labels into a tree, enabling training and inference times that are logarithmic in the number of labels. While training a model once a label tree is available is well studied, designing the structure of the tree is a difficult task that is not yet well understood, and can dramatically impact both model latency and statistical performance. Existing approaches to tree construction fall at an extreme point, either optimizing exclusively for statistical performance, or for latency. We propose an efficient information theory inspired algorithm to construct intermediary operating points that trade off between the benefits of both. Our algorithm enables interpolation between these objectives, which was not previously possible. We corroborate our theoretical analysis with numerical results, showing that on the Wiki-500K benchmark dataset our method can reduce a proxy for expected latency by up to 28% while maintaining the same accuracy as Parabel. On several datasets derived from e-commerce customer logs, our modified label tree is able to improve this expected latency metric by up to 20% while maintaining the same accuracy. Finally, we discuss challenges in realizing these latency improvements in deployed models.
Extreme multi-label classification (XMC) is the problem of finding the relevant labels for an input, from a very large universe of possible labels. We consider XMC in the setting where labels are available only for groups of samples - but not for individual ones. Current XMC approaches are not built for such multi-instance multi-label (MIML) training data, and MIML approaches do not scale to XMC sizes. We develop a new and scalable algorithm to impute individual-sample labels from the group labels; this can be paired with any existing XMC method to solve the aggregated label problem. We characterize the statistical properties of our algorithm under mild assumptions, and provide a new end-to-end framework for MIML as an extension. Experiments on both aggregated label XMC and MIML tasks show the advantages over existing approaches.
103 - Hui Ye , Zhiyu Chen , Da-Han Wang 2020
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently released generalized autoregressive pretrained model (XLNet) to learn a dense representation for the input text. We propose Adaptive Probabilistic Label Clusters (APLC) to approximate the cross entropy loss by exploiting the unbalanced label distribution to form clusters that explicitly reduce the computational time. Our experiments, carried out on five benchmark datasets, show that our approach has achieved new state-of-the-art results on four benchmark datasets. Our source code is available publicly at https://github.com/huiyegit/APLC_XLNet.
As neural network model sizes have dramatically increased, so has the interest in various techniques to reduce their parameter counts and accelerate their execution. An active area of research in this field is sparsity - encouraging zero values in parameters that can then be discarded from storage or computations. While most research focuses on high levels of sparsity, there are challenges in universally maintaining model accuracy as well as achieving significant speedups over modern matrix-math hardware. To make sparsity adoption practical, the NVIDIA Ampere GPU architecture introduces sparsity support in its matrix-math units, Tensor Cores. We present the design and behavior of Sparse Tensor Cores, which exploit a 2:4 (50%) sparsity pattern that leads to twice the math throughput of dense matrix units. We also describe a simple workflow for training networks that both satisfy 2:4 sparsity pattern requirements and maintain accuracy, verifying it on a wide range of common tasks and model architectures. This workflow makes it easy to prepare accurate models for efficient deployment on Sparse Tensor Cores.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا