Do you want to publish a course? Click here

Optical conductivity of a Dirac-Fermi liquid

131   0   0.0 ( 0 )
 Added by Prachi Sharma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Dirac-Fermi liquid (DFL)--a doped system with Dirac spectrum--is an important example of a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL include, e.g., doped graphene, surface states of three-dimensional (3D) topological insulators, and 3D Dirac/Weyl metals. We study the optical conductivity of a DFL arising from intraband electron-electron scattering. It is shown that the effective current relaxation rate behaves as $1/tau_{J}propto left(omega^2+4pi^2 T^2right)left(3omega^2+8pi^2 T^2right)$ for $max{omega, T}ll mu$, where $mu$ is the chemical potential, with an additional logarithmic factor in two dimensions. In graphene, the quartic form of $1/tau_{J}$ competes with a small FL-like term, $proptoomega^2+4pi^2 T^2$, due to trigonal warping of the Fermi surface. We also calculated the dynamical charge susceptibility, $chi_mathrm{c}({bf q},omega)$, outside the particle-hole continua and to one-loop order in the dynamically screened Coulomb interaction. For a 2D DFL, the imaginary part of $chi_mathrm{c}({bf q},omega)$ scales as $q^2omegaln|omega|$ and $q^4/omega^3$ for frequencies larger and smaller than the plasmon frequency at given $q$, respectively. The small-$q$ limit of $mathrm{Im} chi_mathrm{c}({bf q},omega)$ reproduces our result for the conductivity via the Einstein relation.



rate research

Read More

250 - Yuki Fuseya , Masao Ogata , 2011
A mechanism is proposed based on the Kubo formula to generate a spin-polarized magneto-optical current of Dirac electrons in solids which have strong spin-orbit interactions such as bismuth. The ac current response functions are calculated in the isotropic Wolff model under an external magnetic field, and the selection rules for Dirac electrons are obtained. By using the circularly polarized light and tuning its frequency, one can excite electrons concentrated in the spin-polarized lowest Landau level when the chemical potential locates in the band gap, so that spin-polarization in the magneto-optical current can be achieved.
Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard nanodevice architecture, involving a dot coupled to both a quantum box and metallic leads, can host an exotic SO(5) symmetry Kondo effect, with entangled dot and box charge and spin. This NFL state is surprisingly robust to breaking channel and spin symmetry, but destabilized by particle-hole asymmetry. By tuning gate voltages, the SO(5) state evolves continuously to a spin and then flavor two-channel Kondo state. The expected experimental conductance signatures are highlighted.
Landaus Fermi liquid theory is a cornerstone of quantum many body physics. At its heart is the adiabatic connection between the elementary excitations of an interacting fermion system and those of the same system with the interactions turned off. Recently, this tenet has been challenged with the finding of a non-Landau Fermi liquid, that is a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. In particular, a spin-1 two-channel Kondo impurity with single-ion magnetic anisotropy $D$ has a topological quantum phase transition at a critical value $D_c$: for $D < D_c$ the system behaves as an ordinary Fermi liquid with a large Fermi level spectral weight, while above $D_c$ the system is a non-Landau Fermi liquid with a pseudogap at the Fermi level, topologically characterized by a non-trivial Friedel sum rule with non-zero Luttinger integrals. Here, we develop a non-trivial extension of this new Fermi liquid theory to general multi-orbital problems with finite magnetic field and we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) metal substrate that were previously described in disconnected and conflicting ways. The differential conductance measured using a scanning tunneling microscope (STM) shows a zero-bias dip that widens when the molecule is lifted from the surface and is transformed continuously into a peak under an applied magnetic field. Numerically solving a spin-1 impurity model with single-ion anisotropy for realistic parameter values, we robustly reproduce all these central features, allowing us to conclude that iron phthalocyanine molecules on Au(111) constitute the first confirmed experimental realization of a non-Landau Fermi liquid.
The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interactions. We instead start with a clean non-Fermi liquid near a 2D ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system has a marginally stable fixed point with perfect conduction.
The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا