No Arabic abstract
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision. However, the irregular structure of meshes makes it hard to exploit the power of CNNs directly. A subdivision surface provides a hierarchical multi-resolution structure, and each face in a closed 2-manifold triangle mesh is exactly adjacent to three faces. Motivated by these two properties, this paper introduces a novel and flexible CNN framework, named SubdivNet, for 3D triangle meshes with Loop subdivision sequence connectivity. Making an analogy between mesh faces and pixels in a 2D image allows us to present a mesh convolution operator to aggregate local features from adjacent faces. By exploiting face neighborhoods, this convolution can support standard 2D convolutional network concepts, e.g. variable kernel size, stride, and dilation. Based on the multi-resolution hierarchy, we propose a spatial uniform pooling layer which merges four faces into one and an upsampling method which splits one face into four. As a result, many popular 2D CNN architectures can be readily adapted to processing 3D meshes. Meshes with arbitrary connectivity can be remeshed to hold Loop subdivision sequence connectivity via self-parameterization, making SubdivNet a general approach. Experiments on mesh classification, segmentation, correspondence, and retrieval from the real-world demonstrate the effectiveness and efficiency of SubdivNet.
This paper addresses mesh restoration problems, i.e., denoising and completion, by learning self-similarity in an unsupervised manner. For this purpose, the proposed method, which we refer to as Deep Mesh Prior, uses a graph convolutional network on meshes to learn the self-similarity. The network takes a single incomplete mesh as input data and directly outputs the reconstructed mesh without being trained using large-scale datasets. Our method does not use any intermediate representations such as an implicit field because the whole process works on a mesh. We demonstrate that our unsupervised method performs equally well or even better than the state-of-the-art methods using large-scale datasets.
Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed filters: spatial adaptation is impossible without sacrificing efficient computation. In early work, Freeman and Adelson have shown how steerable filters can address this limitation, providing a way for rotating the filter as it is passed over the signal. In this work, we provide a general, representation-theoretic, framework that allows for spatially varying linear transformations to be applied to the filter. This framework allows for efficient implementation of extended convolution and correlation for transformation groups such as rotation (in 2D and 3D) and scale, and provides a new interpretation for previous methods including steerable filters and the generalized Hough transform. We present applications to pattern matching, image feature description, vector field visualization, and adaptive image filtering.
We present a method for reconstructing triangle meshes from point clouds. Existing learning-based methods for mesh reconstruction mostly generate triangles individually, making it hard to create manifold meshes. We leverage the properties of 2D Delaunay triangulations to construct a mesh from manifold surface elements. Our method first estimates local geodesic neighborhoods around each point. We then perform a 2D projection of these neighborhoods using a learned logarithmic map. A Delaunay triangulation in this 2D domain is guaranteed to produce a manifold patch, which we call a Delaunay surface element. We synchronize the local 2D projections of neighboring elements to maximize the manifoldness of the reconstructed mesh. Our results show that we achieve better overall manifoldness of our reconstructed meshes than current methods to reconstruct meshes with arbitrary topology. Our code, data and pretrained models can be found online: https://github.com/mrakotosaon/dse-meshing
Convolutions are the fundamental building block of CNNs. The fact that their weights are spatially shared is one of the main reasons for their widespread use, but it also is a major limitation, as it makes convolutions content agnostic. We propose a pixel-adaptive convolution (PAC) operation, a simple yet effective modification of standard convolutions, in which the filter weights are multiplied with a spatially-varying kernel that depends on learnable, local pixel features. PAC is a generalization of several popular filtering techniques and thus can be used for a wide range of use cases. Specifically, we demonstrate state-of-the-art performance when PAC is used for deep joint image upsampling. PAC also offers an effective alternative to fully-connected CRF (Full-CRF), called PAC-CRF, which performs competitively, while being considerably faster. In addition, we also demonstrate that PAC can be used as a drop-in replacement for convolution layers in pre-trained networks, resulting in consistent performance improvements.
We present a method that processes 3D point clouds by performing graph convolution operations across shapes. In this manner, point descriptors are learned by allowing interaction and propagation of feature representations within a shape collection. To enable this form of non-local, cross-shape graph convolution, our method learns a pairwise point attention mechanism indicating the degree of interaction between points on different shapes. Our method also learns to create a graph over shapes of an input collection whose edges connect shapes deemed as useful for performing cross-shape convolution. The edges are also equipped with learned weights indicating the compatibility of each shape pair for cross-shape convolution. Our experiments demonstrate that this interaction and propagation of point representations across shapes make them more discriminative. In particular, our results show significantly improved performance for 3D point cloud semantic segmentation compared to conventional approaches, especially in cases with the limited number of training examples.