Droplet-mediated long-range interfacial correlations. Exact results and numerical simulations


Abstract in English

We consider near-critical two-dimensional statistical systems at phase coexistence on the half plane with boundary conditions leading to the formation of a droplet separating coexisting phases. General low-energy properties of two-dimensional field theories are used in order to find exact analytic results for one- and two-point correlation functions of both the energy density and order parameter fields. The subleading finite-size corrections are also computed and interpreted within an exact probabilistic picture in which interfacial fluctuations are characterized by the probability density of a Brownian excursion. The analytical results are compared against high-precision Monte Carlo simulations we performed for the specific case of the Ising model. The numerical results are found to be in good agreement with the analytic results in absence of adjustable parameters. The explicit analysis of the closed-form expression for order parameter correlations reveals the long-ranged character of interfacial correlations and their confinement within the interfacial region. The analysis of correlations is then carried out in momentum space through the notion of interface structure factor, which we extend to the case of systems bounded by a flat wall. The presence of the wall and its associated entropic repulsion leads to a specific term in the interface structure factor which we identify.

Download