Do you want to publish a course? Click here

Total squared mean curvature of immersed submanifolds in a negatively curved space

326   0   0.0 ( 0 )
 Added by Shicheng Xu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $nge 2$ and $kge 1$ be two integers. Let $M$ be an isometrically immersed closed $n$-submanifold of co-dimension $k$ that is homotopic to a point in a complete manifold $N$, where the sectional curvature of $N$ is no more than $delta<0$. We prove that the total squared mean curvature of $M$ in $N$ and the first non-zero eigenvalue $lambda_1(M)$ of $M$ satisfies $$lambda_1(M)le nleft(delta +frac{1}{operatorname{Vol} M}int_M |H|^2 operatorname{dvol}right).$$ The equality implies that $M$ is minimally immersed in a metric sphere after lifted to the universal cover of $N$. This completely settles an open problem raised by E. Heintze in 1988.



rate research

Read More

We state and prove a Chern-Osserman-type inequality in terms of the volume growth for complete surfaces with controlled mean curvature properly immersed in a Cartan-Hadamard manifold $N$ with sectional curvatures bounded from above by a negative quantity $K_{N}leq b<0$
176 - Nigel Hitchin 2020
We describe the action of the fundamental group of a closed Finsler surface of negative curvature on the geodesics in the universal covering in terms of a flat symplectic connection and consider the first order deformation theory about a hyperbolic metric. A construction of O.Biquard yields a family of metrics which give nontrivial deformations of the holonomy, extending the representation of the fundamental group from SL(2,R) into the group of Hamiltonian diffeomorphisms of S^1 x R, and producing an infinite-dimensional version of Teichmuller space which contains the classical one.
Jorge-Koutrofiotis and Pigola-Rigoli-Setti proved sharp sectional curvature estimates for extrinsically bounded submanifolds. Alias, Bessa and Montenegro showed that these estimates hold on properly immersed cylindrically bounded submanifolds. On the other hand, Alias, Bessa and Dajczer proved sharp mean curvature estimates for properly immersed cylindrically bounded submanifolds. In this paper we prove these sectional and mean curvature estimates for a larger class of submanifolds, the properly immersed $phi$-bounded submanifolds.
We prove mean curvature estimates and a Jorge-Koutroufiotis type theorem for submanifolds confined into either a horocylinder of N X L or a horoball of N, where N is a Cartan-Hadamard manifold with pinched curvature. Thus, these submanifolds behave in many respects like submanifolds immersed into compact balls and into cylinders over compact balls. The proofs rely on the Hessian comparison theorem for the Busemann function.
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا