Do you want to publish a course? Click here

Adversarially Adaptive Normalization for Single Domain Generalization

121   0   0.0 ( 0 )
 Added by Xinjie Fan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Single domain generalization aims to learn a model that performs well on many unseen domains with only one domain data for training. Existing works focus on studying the adversarial domain augmentation (ADA) to improve the models generalization capability. The impact on domain generalization of the statistics of normalization layers is still underinvestigated. In this paper, we propose a generic normalization approach, adaptive standardization and rescaling normalization (ASR-Norm), to complement the missing part in previous works. ASR-Norm learns both the standardization and rescaling statistics via neural networks. This new form of normalization can be viewed as a generic form of the traditional normalizations. When trained with ADA, the statistics in ASR-Norm are learned to be adaptive to the data coming from different domains, and hence improves the model generalization performance across domains, especially on the target domain with large discrepancy from the source domain. The experimental results show that ASR-Norm can bring consistent improvement to the state-of-the-art ADA approaches by 1.6%, 2.7%, and 6.3% averagely on the Digits, CIFAR-10-C, and PACS benchmarks, respectively. As a generic tool, the improvement introduced by ASR-Norm is agnostic to the choice of ADA methods.

rate research

Read More

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
79 - Lei Li , Ke Gao , Juan Cao 2021
Single domain generalization is a challenging case of model generalization, where the models are trained on a single domain and tested on other unseen domains. A promising solution is to learn cross-domain invariant representations by expanding the coverage of the training domain. These methods have limited generalization performance gains in practical applications due to the lack of appropriate safety and effectiveness constraints. In this paper, we propose a novel learning framework called progressive domain expansion network (PDEN) for single domain generalization. The domain expansion subnetwork and representation learning subnetwork in PDEN mutually benefit from each other by joint learning. For the domain expansion subnetwork, multiple domains are progressively generated in order to simulate various photometric and geometric transforms in unseen domains. A series of strategies are introduced to guarantee the safety and effectiveness of the expanded domains. For the domain invariant representation learning subnetwork, contrastive learning is introduced to learn the domain invariant representation in which each class is well clustered so that a better decision boundary can be learned to improve its generalization. Extensive experiments on classification and segmentation have shown that PDEN can achieve up to 15.28% improvement compared with the state-of-the-art single-domain generalization methods.
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which trains a model on source domains that generalizes well on unseen target domain without model updating. In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID. It describes unseen target domain as a combination of the known source ones, and explicitly learns domain-specific representation with target distribution to improve the models generalization by a meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization layers to collect individual source domains characteristics, and maps source domains into a shared latent space by using these characteristics, where the domain relevance is measured by a distance function of different domain-specific normalization statistics and features. At the testing stage, AdsNorm projects images from unseen target domain into the same latent space, and adaptively integrates the domain-specific features carrying the source distributions by domain relevance for learning more generalizable aggregated representation on unseen target domain. Considering that target domain is unavailable during training, a meta-learning algorithm combined with a customized relation loss is proposed to optimize an effective and efficient ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the state-of-the-art methods. The code is available at: https://github.com/hzphzp/AdsNorm.
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several recent methods use multiple datasets to train models to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependant representations by using ad-hoc batch normalization layers to collect independent domains statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain can be measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain. In contrast to the conventional DG that strictly requires the availability of multiple source domains, this paper considers a more realistic yet challenging scenario, namely Single Domain Generalization (Single-DG), where only one source domain is available for training. In this scenario, the limited diversity may jeopardize the model generalization on unseen target domains. To tackle this problem, we propose a style-complement module to enhance the generalization power of the model by synthesizing images from diverse distributions that are complementary to the source ones. More specifically, we adopt a tractable upper bound of mutual information (MI) between the generated and source samples and perform a two-step optimization iteratively: (1) by minimizing the MI upper bound approximation for each sample pair, the generated images are forced to be diversified from the source samples; (2) subsequently, we maximize the MI between the samples from the same semantic category, which assists the network to learn discriminative features from diverse-styled images. Extensive experiments on three benchmark datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods by up to 25.14%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا