Do you want to publish a course? Click here

Exploring Distantly-Labeled Rationales in Neural Network Models

203   0   0.0 ( 0 )
 Added by Quzhe Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent studies strive to incorporate various human rationales into neural networks to improve model performance, but few pay attention to the quality of the rationales. Most existing methods distribute their models focus to distantly-labeled rationale words entirely and equally, while ignoring the potential important non-rationale words and not distinguishing the importance of different rationale words. In this paper, we propose two novel auxiliary loss functions to make better use of distantly-labeled rationales, which encourage models to maintain their focus on important words beyond labeled rationales (PINs) and alleviate redundant training on non-helpful rationales (NoIRs). Experiments on two representative classification tasks show that our proposed methods can push a classification model to effectively learn crucial clues from non-perfect rationales while maintaining the ability to spread its focus to other unlabeled important words, thus significantly outperform existing methods.

rate research

Read More

Pre-trained language models achieves high performance on machine reading comprehension (MRC) tasks but the results are hard to explain. An appealing approach to make models explainable is to provide rationales for its decision. To facilitate supervised learning of human rationales, here we present PALRACE (Pruned And Labeled RACE), a new MRC dataset with human labeled rationales for 800 passages selected from the RACE dataset. We further classified the question to each passage into 6 types. Each passage was read by at least 26 participants, who labeled their rationales to answer the question. Besides, we conducted a rationale evaluation session in which participants were asked to answering the question solely based on labeled rationales, confirming that the labeled rationales were of high quality and can sufficiently support question answering.
Distantly-labeled data can be used to scale up training of statistical models, but it is typically noisy and that noise can vary with the distant labeling technique. In this work, we propose a two-stage procedure for handling this type of data: denoise it with a learned model, then train our final model on clean and denoised distant data with standard supervised training. Our denoising approach consists of two parts. First, a filtering function discards examples from the distantly labeled data that are wholly unusable. Second, a relabeling function repairs noisy labels for the retained examples. Each of these components is a model trained on synthetically-noised examples generated from a small manually-labeled set. We investigate this approach on the ultra-fine entity typing task of Choi et al. (2018). Our baseline model is an extension of their model with pre-trained ELMo representations, which already achieves state-of-the-art performance. Adding distant data that has been denoised with our learned models gives further performance gains over this base model, outperforming models trained on raw distant data or heuristically-denoised distant data.
Despite the recent success of deep neural networks in natural language processing, the extent to which they can demonstrate human-like generalization capacities for natural language understanding remains unclear. We explore this issue in the domain of natural language inference (NLI), focusing on the transitivity of inference relations, a fundamental property for systematically drawing inferences. A model capturing transitivity can compose basic inference patterns and draw new inferences. We introduce an analysis method using synthetic and naturalistic NLI datasets involving clause-embedding verbs to evaluate whether models can perform transitivity inferences composed of veridical inferences and arbitrary inference types. We find that current NLI models do not perform consistently well on transitivity inference tasks, suggesting that they lack the generalization capacity for drawing composite inferences from provided training examples. The data and code for our analysis are publicly available at https://github.com/verypluming/transitivity.
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing. We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks. Present approaches to code analysis depend heavily on features derived from the Abstract Syntax Tree (AST) while our transformer-based language models work on raw source code. This work is the first to investigate whether such language models can discover AST features automatically. To achieve this, we introduce a sequence labeling task that directly probes the language models understanding of AST. Our results show that transformer based language models achieve high accuracy in the AST tagging task. Furthermore, we evaluate our model on a software vulnerability identification task. Importantly, we show that our approach obtains vulnerability identification results comparable to graph based approaches that rely heavily on compilers for feature extraction.
The last several years have seen intensive interest in exploring neural-network-based models for machine comprehension (MC) and question answering (QA). In this paper, we approach the problems by closely modelling questions in a neural network framework. We first introduce syntactic information to help encode questions. We then view and model different types of questions and the information shared among them as an adaptation task and proposed adaptation models for them. On the Stanford Question Answering Dataset (SQuAD), we show that these approaches can help attain better results over a competitive baseline.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا