Do you want to publish a course? Click here

AliCG: Fine-grained and Evolvable Conceptual Graph Construction for Semantic Search at Alibaba

152   0   0.0 ( 0 )
 Added by Ningyu Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Conceptual graphs, which is a particular type of Knowledge Graphs, play an essential role in semantic search. Prior conceptual graph construction approaches typically extract high-frequent, coarse-grained, and time-invariant concepts from formal texts. In real applications, however, it is necessary to extract less-frequent, fine-grained, and time-varying conceptual knowledge and build taxonomy in an evolving manner. In this paper, we introduce an approach to implementing and deploying the conceptual graph at Alibaba. Specifically, We propose a framework called AliCG which is capable of a) extracting fine-grained concepts by a novel bootstrapping with alignment consensus approach, b) mining long-tail concepts with a novel low-resource phrase mining approach, c) updating the graph dynamically via a concept distribution estimation method based on implicit and explicit user behaviors. We have deployed the framework at Alibaba UC Browser. Extensive offline evaluation as well as online A/B testing demonstrate the efficacy of our approach.

rate research

Read More

136 - Yanhao Zhang , Pan Pan , Yun Zheng 2021
This paper introduces the large scale visual search algorithm and system infrastructure at Alibaba. The following challenges are discussed under the E-commercial circumstance at Alibaba (a) how to handle heterogeneous image data and bridge the gap between real-shot images from user query and the online images. (b) how to deal with large scale indexing for massive updating data. (c) how to train deep models for effective feature representation without huge human annotations. (d) how to improve the user engagement by considering the quality of the content. We take advantage of large image collection of Alibaba and state-of-the-art deep learning techniques to perform visual search at scale. We present solutions and implementation details to overcome those problems and also share our learnings from building such a large scale commercial visual search engine. Specifically, model and search-based fusion approach is introduced to effectively predict categories. Also, we propose a deep CNN model for joint detection and feature learning by mining user click behavior. The binary index engine is designed to scale up indexing without compromising recall and precision. Finally, we apply all the stages into an end-to-end system architecture, which can simultaneously achieve highly efficient and scalable performance adapting to real-shot images. Extensive experiments demonstrate the advancement of each module in our system. We hope visual search at Alibaba becomes more widely incorporated into todays commercial applications.
242 - Kang Zhao , Pan Pan , Yun Zheng 2021
Graph-based approximate nearest neighbor search has attracted more and more attentions due to its online search advantages. Numbers of methods studying the enhancement of speed and recall have been put forward. However, few of them focus on the efficiency and scale of offline graph-construction. For a deployed visual search system with several billions of online images in total, building a billion-scale offline graph in hours is essential, which is almost unachievable by most existing methods. In this paper, we propose a novel algorithm called Binary Distributed Graph to solve this problem. Specifically, we combine binary codes with graph structure to speedup online and offline procedures, and achieve comparable performance with the ones in real-value based scenarios by recalling more binary candidates. Furthermore, the graph-construction is optimized to completely distributed implementation, which significantly accelerates the offline process and gets rid of the limitation of memory and disk within a single machine. Experimental comparisons on Alibaba Commodity Data Set (more than three billion images) show that the proposed method outperforms the state-of-the-art with respect to the online/offline trade-off.
State-of-the-art deep networks are often too large to deploy on mobile devices and embedded systems. Mobile neural architecture search (NAS) methods automate the design of small models but state-of-the-art NAS methods are expensive to run. Differentiable neural architecture search (DNAS) methods reduce the search cost but explore a limited subspace of candidate architectures. In this paper, we introduce Fine-Grained Stochastic Architecture Search (FiGS), a differentiable search method that searches over a much larger set of candidate architectures. FiGS simultaneously selects and modifies operators in the search space by applying a structured sparse regularization penalty based on the Logistic-Sigmoid distribution. We show results across 3 existing search spaces, matching or outperforming the original search algorithms and producing state-of-the-art parameter-efficient models on ImageNet (e.g., 75.4% top-1 with 2.6M params). Using our architectures as backbones for object detection with SSDLite, we achieve significantly higher mAP on COCO (e.g., 25.8 with 3.0M params) than MobileNetV3 and MnasNet.
141 - Chen Shi , Xiangtai Li , Yanran Wu 2021
Representation of semantic context and local details is the essential issue for building modern semantic segmentation models. However, the interrelationship between semantic context and local details is not well explored in previous works. In this paper, we propose a Dynamic Dual Sampling Module (DDSM) to conduct dynamic affinity modeling and propagate semantic context to local details, which yields a more discriminative representation. Specifically, a dynamic sampling strategy is used to sparsely sample representative pixels and channels in the higher layer, forming adaptive compact support for each pixel and channel in the lower layer. The sampled features with high semantics are aggregated according to the affinities and then propagated to detailed lower-layer features, leading to a fine-grained segmentation result with well-preserved boundaries. Experiment results on both Cityscapes and Camvid datasets validate the effectiveness and efficiency of the proposed approach. Code and models will be available at url{x3https://github.com/Fantasticarl/DDSM}.
53 - Hui Xu , Liyao Xiang , Youmin Le 2020
Graph matching pairs corresponding nodes across two or more graphs. The problem is difficult as it is hard to capture the structural similarity across graphs, especially on large graphs. We propose to incorporate high-order information for matching large-scale graphs. Iterated line graphs are introduced for the first time to describe such high-order information, based on which we present a new graph matching method, called High-order Graph Matching Network (HGMN), to learn not only the local structural correspondence, but also the hyperedge relations across graphs. We theoretically prove that iterated line graphs are more expressive than graph convolution networks in terms of aligning nodes. By imposing practical constraints, HGMN is made scalable to large-scale graphs. Experimental results on a variety of settings have shown that, HGMN acquires more accurate matching results than the state-of-the-art, verifying our method effectively captures the structural similarity across different graphs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا