Impact of hypernova { u}p-process nucleosynthesis on the galactic chemical evolution of Mo and Ru


Abstract in English

We calculate Galactic Chemical Evolution (GCE) of Mo and Ru by taking into account the contribution from $ u p$-process nucleosynthesis. We estimate yields of $p$-nuclei such as $^{92,94}mathrm{Mo}$ and $^{96,98}mathrm{Ru}$ through the $ u p$-process in various supernova (SN) progenitors based upon recent models. In particular, the $ u p$-process in energetic hypernovae produces a large amount of $p$-nuclei compared to the yield in ordinary core-collapse SNe. Because of this the abundances of $^{92,94}mathrm{Mo}$ and $^{96,98}mathrm{Ru}$ in the Galaxy are significantly enhanced at [Fe/H]=0 by the $ u p$-process. We find that the $ u p$-process in hypernovae is the main contributor to the elemental abundance of $^{92}$Mo at low metallicity [Fe/H$]<-2$. Our theoretical prediction of the elemental abundances in metal-poor stars becomes more consistent with observational data when the $ u p$-process in hypernovae is taken into account.

Download