Magnetic moire surface states and flat chern band in topological insulators


Abstract in English

We theoretically study the effect of magnetic moire superlattice on the topological surface states by introducing a continuum model of Dirac electrons with a single Dirac cone moving in the time-reversal symmetry breaking periodic pontential. The Zeeman-type moire potentials generically gap out the moire surface Dirac cones and give rise to isolated flat Chern minibands with Chern number $pm1$. This result provides a promising platform for realizing the time-reversal breaking correlated topological phases. In a $C_6$ periodic potential, when the scalar $U_0$ and Zeeman $Delta_1$ moire potential strengths are equal to each other, we find that energetically the first three bands of $Gamma$-valley moire surface electrons are non-degenerate and realize i) an $s$-orbital model on a honeycomb lattice, ii) a degenerate $p_x,p_y$-orbitals model on a honeycomb lattice, and iii) a hybridized $sd^2$-orbital model on a kagome lattice, where moire surface Dirac cones in these bands emerge. When $U_0 eqDelta_1$, the difference between the two moire potential serves as an effective spin-orbit coupling and opens a topological gap in the emergent moire surface Dirac cones.

Download