Do you want to publish a course? Click here

MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding

213   0   0.0 ( 0 )
 Added by Jia-Chen Gu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, various neural models for multi-party conversation (MPC) have achieved impressive improvements on a variety of tasks such as addressee recognition, speaker identification and response prediction. However, these existing methods on MPC usually represent interlocutors and utterances individually and ignore the inherent complicated structure in MPC which may provide crucial interlocutor and utterance semantics and would enhance the conversation understanding process. To this end, we present MPC-BERT, a pre-trained model for MPC understanding that considers learning who says what to whom in a unified model with several elaborated self-supervised tasks. Particularly, these tasks can be generally categorized into (1) interlocutor structure modeling including reply-to utterance recognition, identical speaker searching and pointer consistency distinction, and (2) utterance semantics modeling including masked shared utterance restoration and shared node detection. We evaluate MPC-BERT on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that MPC-BERT outperforms previous methods by large margins and achieves new state-of-the-art performance on all three downstream tasks at two benchmarks.



rate research

Read More

Disentanglement is a problem in which multiple conversations occur in the same channel simultaneously, and the listener should decide which utterance is part of the conversation he will respond to. We propose a new model, named Dialogue BERT (DialBERT), which integrates local and global semantics in a single stream of messages to disentangle the conversations that mixed together. We employ BERT to capture the matching information in each utterance pair at the utterance-level, and use a BiLSTM to aggregate and incorporate the context-level information. With only a 3% increase in parameters, a 12% improvement has been attained in comparison to BERT, based on the F1-Score. The model achieves a state-of-the-art result on the a new dataset proposed by IBM and surpasses previous work by a substantial margin.
88 - Hu Xu , Lei Shu , Philip S. Yu 2020
This paper analyzes the pre-trained hidden representations learned from reviews on BERT for tasks in aspect-based sentiment analysis (ABSA). Our work is motivated by the recent progress in BERT-based language models for ABSA. However, it is not clear how the general proxy task of (masked) language model trained on unlabeled corpus without annotations of aspects or opinions can provide important features for downstream tasks in ABSA. By leveraging the annotated datasets in ABSA, we investigate both the attentions and the learned representations of BERT pre-trained on reviews. We found that BERT uses very few self-attention heads to encode context words (such as prepositions or pronouns that indicating an aspect) and opinion words for an aspect. Most features in the representation of an aspect are dedicated to the fine-grained semantics of the domain (or product category) and the aspect itself, instead of carrying summarized opinions from its context. We hope this investigation can help future research in improving self-supervised learning, unsupervised learning and fine-tuning for ABSA. The pre-trained model and code can be found at https://github.com/howardhsu/BERT-for-RRC-ABSA.
Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese -- Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.
81 - Xinsong Zhang , Pengshuai Li , 2020
Pre-trained language models such as BERT have exhibited remarkable performances in many tasks in natural language understanding (NLU). The tokens in the models are usually fine-grained in the sense that for languages like English they are words or sub-words and for languages like Chinese they are characters. In English, for example, there are multi-word expressions which form natural lexical units and thus the use of coarse-grained tokenization also appears to be reasonable. In fact, both fine-grained and coarse-grained tokenizations have advantages and disadvantages for learning of pre-trained language models. In this paper, we propose a novel pre-trained language model, referred to as AMBERT (A Multi-grained BERT), on the basis of both fine-grained and coarse-grained tokenizations. For English, AMBERT takes both the sequence of words (fine-grained tokens) and the sequence of phrases (coarse-grained tokens) as input after tokenization, employs one encoder for processing the sequence of words and the other encoder for processing the sequence of the phrases, utilizes shared parameters between the two encoders, and finally creates a sequence of contextualized representations of the words and a sequence of contextualized representations of the phrases. Experiments have been conducted on benchmark datasets for Chinese and English, including CLUE, GLUE, SQuAD and RACE. The results show that AMBERT can outperform BERT in all cases, particularly the improvements are significant for Chinese. We also develop a method to improve the efficiency of AMBERT in inference, which still performs better than BERT with the same computational cost as BERT.
Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SLU) tasks. Taking phoneme posterior and subword-level text as an input, ST-BERT learns a contextualized cross-modal alignment via our two proposed pre-training tasks: Cross-modal Masked Language Modeling (CM-MLM) and Cross-modal Conditioned Language Modeling (CM-CLM). Experimental results on three benchmarks present that our approach is effective for various SLU datasets and shows a surprisingly marginal performance degradation even when 1% of the training data are available. Also, our method shows further SLU performance gain via domain-adaptive pre-training with domain-specific speech-text pair data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا