Do you want to publish a course? Click here

X-ray emission from BH+O star binaries expected to descend from the observed galactic WR+O binaries

129   0   0.0 ( 0 )
 Added by Koushik Sen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the Milky Way, $sim$18 Wolf-Rayet+O (WR+O) binaries are known with estimates of their stellar and orbital parameters. Whereas black hole+O (BH+O) binaries are thought to evolve from the former, only one such system is known in the Milky Way. To resolve this disparity, it was suggested that upon core collapse, the WR stars receive large kicks such that most of the binaries are disrupted. We reassess this issue, with emphasis on the uncertainty in the formation of an accretion disk around wind-accreting BHs in BH+O binaries, which is key to identifying such systems. We follow the methodology of previous work and apply an improved analytic criterion for the formation of an accretion disk around wind accreting BHs. We then use stellar models to predict the properties of the BH+O binaries which are expected to descend from the observed WR+O binaries, if the WR stars would form BHs without a natal kick. We find that disk formation depends sensitively on the O stars wind velocity, the specific angular momentum carried by the wind, the efficiency of angular momentum accretion by the BH, and the spin of the BH. We show that the assumption of a low wind velocity may lead to predicting that most of the BH+O star binaries will have an extended X-ray bright period. However, this is not the case when typical wind velocities of O stars are considered. We find that a high spin of the BH can boost the duration of the X-ray active phase as well as the X-ray brightness during this phase, producing a strong bias for detecting high mass BH binaries in X-rays with high BH spin parameters. We conclude that large BH formation kicks are not required to understand the sparsity of X-ray bright BH+O stars in the Milky Way. Probing for a population of X-ray silent BH+O systems with alternative methods can inform us about BH kicks and the conditions for high energy emission from high mass BH binaries. (Abridged)



rate research

Read More

329 - Delia Volpi 2011
Many early-type stars are in binary systems. A number of them shows radio emissivity with periodic variability. This variability is associated with non-thermal synchrotron radiation emitted by relativistic electrons. The strong shocks necessary to accelerate the electrons up to high energies are produced by the collision of the radiatively-driven stellar winds. A study of the non-thermal emission is necessary in order to investigate O-star colliding wind binaries. Here preliminary results of our modeling of the colliding winds in Cyg OB2 No.9 are presented.
Some massive, merging black holes (BH) may be descendants of binary O stars. The evolution and mass transfer between these O stars determines the spins of their progeny BH. These will be measurable with future gravitational wave detectors, incentivizing the measurement of the spins of O stars in binaries. We previously measured the spins of O stars in Galactic Wolf-Rayet (WR) + O binaries. Here we measure the vsini of four LMC and two SMC O stars in WR + O binaries to determine whether lower metallicity might affect the spin rates. We find that the O stars in Galactic and Magellanic WR + O binaries display average vsini = 258 +/- 18 km/s and 270 +/- 15 km/s, respectively. Two LMC O stars measured on successive nights show significant line width variability, possibly due to differing orbital phases exhibiting different parts of the O stars illuminated differently by their WR companions. Despite this variability, the vsini are highly super-synchronous but distinctly subcritical for the O stars in all these binaries; thus we conclude that an efficient mechanism for shedding angular momentum from O stars in WR + O binaries must exist. This mechanism, probably related to Roche lobe overflow-created dynamo magnetic fields, prevents nearly 100% breakup spin rates, as expected when RLOF operates, as it must, in these stars. A Spruit-Tayler dynamo and O star wind might be that mechanism.
99 - Gregor Rauw , Yael Naze 2015
Previous generations of X-ray observatories revealed a group of massive binaries that were relatively bright X-ray emitters. This was attributed to emission of shock-heated plasma in the wind-wind interaction zone located between the stars. With the advent of the current generation of X-ray observatories, the phenomenon could be studied in much more detail. In this review, we highlight the progress that has been achieved in our understanding of the phenomenon over the last 15 years, both on theoretical and observational grounds. All these studies have paved the way for future investigations using the next generation of X-ray satellites that will provide crucial information on the X-ray emission formed in the innermost part of the wind-wind interaction.
143 - E. R. Parkin , E. Gosset 2011
We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WRs wind overwhelms the O stars and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-ray calculations reveal that when a stable WCR exists the models over-predict the observed X-ray flux by more than two orders of magnitude. The collapse of the WCR onto the O star substantially reduces the discrepancy in the $2-10;$keV flux to a factor of $simeq 6$ at $phi=0.994$. However, the observed spectrum is not well matched by the models. We conclude that the agreement between the models and observations could be improved by increasing the ratio of the mass-loss rates in favour of the WR star to the extent that a normal wind ram pressure balance does not occur at any orbital phase, potentially leading to a sustained collapse of the WCR onto the O star. Radiative braking may then play a significant r^{o}le for the WCR dynamics and resulting X-ray emission.
137 - Tomaso M. Belloni 2018
In this chapter, I present the main X-ray observational characteristics of black-hole binaries and low magnetic field neutron-star binaries, concentrating on what can be considered similarities or differences, with particular emphasis on their fast-timing behaviour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا