No Arabic abstract
The possibility that rotating black holes could be natural particle accelerators has been subject of intense debate. While it appears that for extremal Kerr black holes arbitrarily high center of mass energies could be achieved, several works pointed out that both theoretical as well as astrophysical arguments would severely dampen the attainable energies. In this work we study particle collisions near Kerr--Newman black holes, by reviewing and extending previously proposed scenarios. Most importantly, we implement the hoop conjecture for all cases and we discuss the astrophysical relevance of these collisional Penrose processes. The outcome of this investigation is that scenarios involving near-horizon target particles are in principle able to attain, sub-Planckian, but still ultra high, center of mass energies of the order of $10^{21}-10^{23}$ eV. Thus, these target particle collisional Penrose processes could contribute to the observed spectrum of ultra high-energy cosmic rays, even if the hoop conjecture is taken into account, and as such deserve further scrutiny in realistic settings.
We show that a single imperfect fluid can be used as a source to obtain the generalized McVittie metric as an exact solution to Einsteins equations. The mass parameter in this metric varies with time thanks to a mechanism based on the presence of a temperature gradient. This fully dynamical solution is interpreted as an accreting black hole in an expanding universe if the metric asymptotes to Schwarzschild-de Sitter at temporal infinity. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.
The singularity of a spherical (Schwarzschild) black hole is a surface, not a point. A freely-falling, non-rotating observer sees Hawking radiation with energy density diverging with radius as $rho propto r^{-6}$ near the Schwarzschild singular surface. Spacetime inside a rotating (Kerr) black hole terminates at the inner horizon because of the Poisson-Israel mass inflation instability. If the black hole is accreting, as all realistic black holes do, then generically inflation gives way to Belinski-Khalatnikov-Lifshitz oscillatory collapse to a strong, spacelike singular surface.
The superradiant instability can lead to the generation of extremely dense axion clouds around rotating black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay into photon pairs, stimulated decay becomes significant above a minimum axion density and leads to extremely bright lasers. The lasing threshold can be attained for axion masses $mu gtrsim 10^{-8} mathrm{eV}$, which implies superradiant instabilities around spinning primordial black holes with mass $lesssim 0.01M_odot$. Although the latter are expected to be non-rotating at formation, a population of spinning black holes may result from subsequent mergers. We further show that lasing can be quenched by Schwinger pair production, which produces a critical electron-positron plasma within the axion cloud. Lasing can nevertheless restart once annihilation lowers the plasma density sufficiently, resulting in multiple laser bursts that repeat until the black hole spins down sufficiently to quench the superradiant instability. In particular, axions with a mass $sim 10^{-5} mathrm{eV}$ and primordial black holes with mass $sim 10^{24}$ kg, which may account for all the dark matter in the Universe, lead to millisecond-bursts in the GHz radio-frequency range, with peak luminosities $sim 10^{42}$ erg/s, suggesting a possible link to the observed fast radio bursts.
Effective field theory methods suggest that some rather-general extensions of General Relativity include, or are mimicked by, certain higher-order curvature corrections, with coupling constants expected to be small but otherwise arbitrary. Thus, the tantalizing prospect to test the fundamental nature of gravity with gravitational-wave observations, in a systematic way, emerges naturally. Here, we build black hole solutions in such a framework and study their main properties. Once rotation is included, we find the first purely gravitational example of geometries without $mathbb{Z}_2$-symmetry. Despite the higher-order operators of the theory, we show that linearized fluctuations of such geometries obey second-order differential equations. We find nonzero tidal Love numbers. We study and compute the quasinormal modes of such geometries. These results are of interest to gravitational-wave science but also potentially relevant for electromagnetic observations of the galactic center or $X$-ray binaries.
We show that rotating black holes do not experience any tidal deformation when they are perturbed by a weak and adiabatic gravitational field. The tidal deformability of an object is quantified by the so-called Love numbers, which describe the objects linear response to its external tidal field. In this work, we compute the Love numbers of Kerr black holes and find that they vanish identically. We also compute the dissipative part of the black holes tidal response, which is non-vanishing due to the absorptive nature of the event horizon. Our results hold for arbitrary values of black hole spin, for both the electric-type and magnetic-type perturbations, and to all orders in the multipole expansion of the tidal field. The boundary conditions at the event horizon and at asymptotic infinity are incorporated in our study, as they are crucial for understanding the way in which these tidal effects are mapped onto gravitational-wave observables. In closing, we address the ambiguity issue of Love numbers in General Relativity, which we argue is resolved when those boundary conditions are taken into account. Our findings provide essential inputs for current efforts to probe the nature of compact objects through the gravitational waves emitted by binary systems.