Self-energy dynamics and mode-specific phonon threshold effect in a Kekule-ordered graphene


Abstract in English

Electron-phonon interaction and related self-energy are fundamental to both the equilibrium properties and non-equilibrium relaxation dynamics of solids. Although electron-phonon interaction has been suggested by various time-resolved measurements to be important for the relaxation dynamics of graphene, the lack of energy- and momentum-resolved self-energy dynamics prohibits direct identification of the role of specific phonon modes in the relaxation dynamics. Here by performing time- and angle-resolved photoemission spectroscopy measurements on a Kekule-ordered graphene with folded Dirac cones at the $Gamma$ point, we have succeeded in resolving the self-energy effect induced by coupling of electrons to two phonons at $Omega_1$ = 177 meV and $Omega_2$ = 54 meV and revealing its dynamical change in the time domain. Moreover, these strongly coupled phonons define energy thresholds, which separate the hierarchical relaxation dynamics from ultrafast, fast to slow, thereby providing direct experimental evidence for the dominant role of mode-specific phonons in the relaxation dynamics

Download