Do you want to publish a course? Click here

Frustrated tunneling dynamics in ultrashort laser pulses

65   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a model for frustrated tunneling ionization using ultrashort laser pulses. The model is based on the strong field approximation and it employs the saddle point approximation to predict quasiclassical trajectories that are captured on Rydberg states. We present a classification of the saddle-point solutions and explore their behavior as functions of angular momentum of the final state, as well as the carrier--envelope phase (CEP) of the laser pulse. We compare the final state population computed by the model to results obtained by numerical propagation of the time-dependent Schrodinger equation (TDSE) for the hydrogen atom. While we find qualitative agreement in the CEP dependence of the populations in principal quantum numbers, $n$, the populations to individual angular momentum channels, $ell$, are found to be inconsistent between model and TDSE. Thus, our results show that improvements of the quasiclassical trajectories are in order for a quantitative model of frustrated tunneling ionizaiton.



rate research

Read More

A theoretical comparison of the electronic excitation and ionisation behaviour of molecular hydrogen oriented either parallel or perpendicular to a linear polarised laser pulse is performed. The investigation is based on a non-perturbative treatment that solves the full time-dependent Schrodinger equation of both correlated electrons within the fixed-nuclei approximation and the dipole. Results are shown for two different laser pulse lengths and intensities as well as for a large variety of photon frequencies starting in the 1- and reaching into the 6-photon regime. In order to investigate the influence of the intrinsic diatomic two-center problem even further, two values of the internuclear separation and a newly developed atomic model are considered.
In recent years it became possible to align molecules in free space using ultrashort laser pulses. Here we explore two schemes for controlling molecule-surface scattering process, which are based on the laser-induced molecular alignment. In the first scheme, a single ultrashort non-resonant laser pulse is applied to a molecular beam hitting the surface. This pulse modifies the angular distribution of the incident molecules, and causes the scattered molecules to rotate with a preferred sense of rotation (clockwise or counter-clockwise). In the second scheme, two properly delayed laser pulses are applied to a molecular beam composed of two chemically close molecular species (isotopes, or nuclear spin isomers). As the result of the double pulse excitation, these species are selectively scattered to different angles after the collision with the surface. These effects may provide new means for the analysis and separation of molecular mixtures.
An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ~1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ~10 PW.
Lead-magnesium niobate lead-titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the micro-machining of PMN-PT thin films or bulk substrates. Approaches reported up to date include chemical etching, excimer laser ablation and ion milling. To ensure an excellent device performance, a key mandatory feature for a micro-machining process is to preserve as far as possible the crystalline quality of the substrates; in other words, the fabrication method must induce a low density of cracks and other kind of defects. In this work, we demonstrate a relatively fast procedure for the fabrication of high-quality PMN-PT micro-machined actuators employing green femtosecond laser pulses. The fabricated devices feature absence of extended cracks and well defined edges with relatively low roughness, which is advantageous for the further integration of nanomaterials onto the piezoelectric actuators.
We investigate experimentally the effect of quantum resonance in the rotational excitation of the simplest quantum rotor - a diatomic molecule. By using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detection, we measure directly the amount of energy absorbed by molecules interacting with a periodic train of laser pulses, and study its dependence on the train period. We show that the energy transfer is significantly enhanced at quantum resonance, and use this effect for demonstrating selective rotational excitation of two nitrogen isotopologues, $ ^{14}N_2$ and $ ^{15}N_2$. Moreover, by tuning the period of the pulse train in the vicinity of a fractional quantum resonance, we achieve spin-selective rotational excitation of para- and ortho-isomers of $ ^{15}N_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا