Experimental investigation of the relation between measurement uncertainties and non-local quantum correlations


Abstract in English

Bells inequalities are defined by sums of correlations involving non-commuting observables in each of the two systems. Violations of Bells inequalities are only possible because the precision of any joint measurement of these observables will be limited by quantum mechanical uncertainty relations. In this paper we explore the relation between the local measurement uncertainties and the magnitude of the correlations by preparing polarization entangled photon pairs and performing joint measurements of non-commuting polarization components at different uncertainty trade-offs. The change in measurement visibility reveals the existence of a non-trivial balance between the measurement uncertainties where the probabilities of a specific pair of measurement outcomes approaches zero because of the particular combination of enhancement and suppression of the experimentally observed correlations. The occurrence of these high-contrast results shows that the quantum correlations between the photons are close to their maximal value, confirming that the Cirelson bound of Bells inequality violations is defined by the minimal uncertainties that limit the precision of joint measurements.

Download