No Arabic abstract
Data clustering is an instrumental tool in the area of energy resource management. One problem with conventional clustering is that it does not take the final use of the clustered data into account, which may lead to a very suboptimal use of energy or computational resources. When clustered data are used by a decision-making entity, it turns out that significant gains can be obtained by tailoring the clustering scheme to the final task performed by the decision-making entity. The key to having good final performance is to automatically extract the important attributes of the data space that are inherently relevant to the subsequent decision-making entity, and partition the data space based on these attributes instead of partitioning the data space based on predefined conventional metrics. For this purpose, we formulate the framework of decision-making oriented clustering and propose an algorithm providing a decision-based partition of the data space and good representative decisions. By applying this novel framework and algorithm to a typical problem of real-time pricing and that of power consumption scheduling, we obtain several insightful analytical results such as the expression of the best representative price profiles for real-time pricing and a very significant reduction in terms of required clusters to perform power consumption scheduling as shown by our simulations.
In this paper, we introduce the problem of decision-oriented communications, that is, the goal of the source is to send the right amount of information in order for the intended destination to execute a task. More specifically, we restrict our attention to how the source should quantize information so that the destination can maximize a utility function which represents the task to be executed only knowing the quantized information. For example, for utility functions under the form $uleft(boldsymbol{x}; boldsymbol{g}right)$, $boldsymbol{x}$ might represent a decision in terms of using some radio resources and $boldsymbol{g}$ the system state which is only observed through its quantized version $Q(boldsymbol{g})$. Both in the case where the utility function is known and the case where it is only observed through its realizations, we provide solutions to determine such a quantizer. We show how this approach applies to energy-efficient power allocation. In particular, it is seen that quantizing the state very roughly is perfectly suited to sum-rate-type function maximization, whereas energy-efficiency metrics are more sensitive to imperfections.
We formally define a feature-space attack where the adversary can perturb datapoints by arbitrary amounts but in restricted directions. By restricting the attack to a small random subspace, our model provides a clean abstraction for non-Lipschitz networks which map small input movements to large feature movements. We prove that classifiers with the ability to abstain are provably more powerful than those that cannot in this setting. Specifically, we show that no matter how well-behaved the natural data is, any classifier that cannot abstain will be defeated by such an adversary. However, by allowing abstention, we give a parameterized algorithm with provably good performance against such an adversary when classes are reasonably well-separated in feature space and the dimension of the feature space is high. We further use a data-driven method to set our algorithm parameters to optimize over the accuracy vs. abstention trade-off with strong theoretical guarantees. Our theory has direct applications to the technique of contrastive learning, where we empirically demonstrate the ability of our algorithms to obtain high robust accuracy with only small amounts of abstention in both supervised and self-supervised settings. Our results provide a first formal abstention-based gap, and a first provable optimization for the induced trade-off in an adversarial defense setting.
With large-scale integration of renewable generation and distributed energy resources (DERs), modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. In this paper, we provide a tutorial on various RL techniques and how they can be applied to decision-making in power systems. We illustrate RL-based models and solutions in three key applications, frequency regulation, voltage control, and energy management. We conclude with three critical issues in the application of RL, i.e., safety, scalability, and data. Several potential future directions are discussed as well.
Given n jobs with release dates, deadlines and processing times we consider the problem of scheduling them on m parallel machines so as to minimize the total energy consumed. Machines can enter a sleep state and they consume no energy in this state. Each machine requires Q units of energy to awaken from the sleep state and in its active state the machine can process jobs and consumes a unit of energy per unit time. We allow for preemption and migration of jobs and provide the first constant approximation algorithm for this problem.
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.