Do you want to publish a course? Click here

Multiple quantum NMR in solids as a method of determination of Wigner-Yanase skew information

97   0   0.0 ( 0 )
 Added by Ilia Lazarev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A connection of the Wigner-Yanase skew information and multiple quantum (MQ) NMR coherences is considered at different temperatures and evolution times of nuclear spins with dipole-dipole interactions in MQ NMR experiments in solids. It is shown that the Wigner-Yanase skew information at temperature $T$ is equal to the double second moment of the MQ NMR spectrum at the double temperature for any evolution times. A comparison of the many-spin entanglement obtained with the Wigner-Yanase information and the Fisher information is conducted.



rate research

Read More

In this paper, we use certain norm inequalities to obtain new uncertain relations based on the Wigner-Yanase skew information. First for an arbitrary finite number of observables we derive an uncertainty relation outperforming previous lower bounds. We then propose new weighted uncertainty relations for two noncompatible observables. Two separable criteria via skew information are also obtained.
Uncertainty relation is a core issue in quantum mechanics and quantum information theory. We introduce modified generalized Wigner-Yanase-Dyson (MGWYD) skew information and modified weighted generalizedWigner-Yanase-Dyson (MWGWYD) skew information, and establish new uncertainty relations in terms of the MGWYD skew information and MWGWYD skew information.
152 - E.B. Feldman , A.N. Pyrkov 2011
A phenomenological theory of spin-lattice relaxation of multiple-quantum coherences in systems of two dipolar coupled spins at low temperatures is developed. Intensities of multiple-quantum NMR coherences depending on the spin-lattice relaxation time are obtained. It is shown that the theory is also applicable to finite spin chains when the approximation of nearest neighbour interaction is used. An application of this theory to an estimation of the influence of decoherence processes on quantum entanglement and its fluctuations is briefly discussed.
We study the skew information-based coherence of quantum states and derive explicit formulas for Werner states and isotropic states in a set of autotensor of mutually unbiased bases (AMUBs). We also give surfaces of skew information-based coherence for Bell-diagonal states and a special class of X states in both computational basis and in mutually unbiased bases. Moreover, we depict the surfaces of the skew information-based coherence for Bell-diagonal states under various types of local nondissipative quantum channels. The results show similar as well as different features compared with relative entropy of coherence and l1 norm of coherence.
The Wigner-Araki-Yanase (WAY) theorem shows that additive conservation laws limit the accuracy of measurements. Recently, various quantitative expressions have been found for quantum limits on measurements induced by additive conservation laws, and have been applied to the study of fundamental limits on quantum information processing. Here, we investigate generalizations of the WAY theorem to multiplicative conservation laws. The WAY theorem is extended to show that an observable not commuting with the modulus of, or equivalently the square of, a multiplicatively conserved quantity cannot be precisely measured. We also obtain a lower bound for the mean-square noise of a measurement in the presence of a multiplicatively conserved quantity. To overcome this noise it is necessary to make large the coefficient of variation (the so-called relative fluctuation), instead of the variance as is the case for additive conservation laws, of the conserved quantity in the apparatus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا