Do you want to publish a course? Click here

Unsupervised Out-of-Domain Detection via Pre-trained Transformers

98   0   0.0 ( 0 )
 Added by Keyang Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deployed real-world machine learning applications are often subject to uncontrolled and even potentially malicious inputs. Those out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues. Prior studies on out-of-domain detection require in-domain task labels and are limited to supervised classification scenarios. Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data. We utilize the latent representations of pre-trained transformers and propose a simple yet effective method to transform features across all layers to construct out-of-domain detectors efficiently. Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy. Our empirical evaluations of related methods on two datasets validate that our method greatly improves out-of-domain detection ability in a more general scenario.



rate research

Read More

Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent text and for phrase completions. In this paper we leverage this generation capability of GPT-2 to generate paraphrases without any supervision from labelled data. We examine how the results compare with other supervised and unsupervised approaches and the effect of using paraphrases for data augmentation on downstream tasks such as classification. Our experiments show that paraphrases generated with our model are of good quality, are diverse and improves the downstream task performance when used for data augmentation.
118 - Boliang Zhang , Ajay Nagesh , 2020
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than traditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.
Pre-trained language models like BERT achieve superior performances in various NLP tasks without explicit consideration of syntactic information. Meanwhile, syntactic information has been proved to be crucial for the success of NLP applications. However, how to incorporate the syntax trees effectively and efficiently into pre-trained Transformers is still unsettled. In this paper, we address this problem by proposing a novel framework named Syntax-BERT. This framework works in a plug-and-play mode and is applicable to an arbitrary pre-trained checkpoint based on Transformer architecture. Experiments on various datasets of natural language understanding verify the effectiveness of syntax trees and achieve consistent improvement over multiple pre-trained models, including BERT, RoBERTa, and T5.
91 - Wuwei Lan , Yang Chen , Wei Xu 2020
Multilingual pre-trained Transformers, such as mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020a), have been shown to enable the effective cross-lingual zero-shot transfer. However, their performance on Arabic information extraction (IE) tasks is not very well studied. In this paper, we pre-train a customized bilingual BERT, dubbed GigaBERT, that is designed specifically for Arabic NLP and English-to-Arabic zero-shot transfer learning. We study GigaBERTs effectiveness on zero-short transfer across four IE tasks: named entity recognition, part-of-speech tagging, argument role labeling, and relation extraction. Our best model significantly outperforms mBERT, XLM-RoBERTa, and AraBERT (Antoun et al., 2020) in both the supervised and zero-shot transfer settings. We have made our pre-trained models publicly available at https://github.com/lanwuwei/GigaBERT.
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the models penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا