Do you want to publish a course? Click here

The $S$-weak global dimension of commutative rings

231   0   0.0 ( 0 )
 Added by Xiaolei Zhang
 Publication date 2021
  fields
and research's language is English
 Authors Xiaolei Zhang




Ask ChatGPT about the research

In this paper, we introduce and study the $S$-weak global dimension $S$-w.gl.dim$(R)$ of a commutative ring $R$ for some multiplicative subset $S$ of $R$. Moreover, commutative rings with $S$-weak global dimension at most $1$ are studied. Finally, we investigated the $S$-weak global dimension of factor rings and polynomial rings.



rate research

Read More

98 - Xiaolei Zhang , Wei Qi 2021
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. First, we introduce and study the $S$-projective dimensions and $S$-injective dimensions of $R$-modules, and then explore the $S$-global dimension $S$-gl.dim$(R)$ of a commutative ring $R$ which is defined to be the supremum of $S$-projective dimensions of all $R$-modules. Finally, we investigated the $S$-global dimension of factor rings and polynomial rings.
137 - Francois Couchot 2011
It is proven that each commutative arithmetical ring $R$ has a finitistic weak dimension $leq 2$. More precisely, this dimension is 0 if $R$ is locally IF, 1 if $R$ is locally semicoherent and not IF, and 2 in the other cases.
115 - Nathan Geist , Ezra Miller 2021
The ring R of real-exponent polynomials in n variables over any field has global dimension n+1 and flat dimension n. In particular, the residue field k = R/m of R modulo its maximal graded ideal m has flat dimension n via a Koszul-like resolution. Projective and flat resolutions of all R-modules are constructed from this resolution of k. The same results hold when R is replaced by the monoid algebra for the positive cone of any subgroup of $mathbb{R}^n$ satisfying a mild density condition.
Let $mathcal{I}(R)$ be the set of all ideals of a ring $R$, $delta$ be an expansion function of $mathcal{I}(R)$. In this paper, the $delta$-$J$-ideal of a commutative ring is defined, that is, if $a, bin R$ and $abin Iin mathcal{I}(R)$, then $ain J(R)$ (the Jacobson radical of $R$) or $bin delta(I)$. Moreover, some properties of $delta$-$J$-ideals are discussed,such as localizations, homomorphic images, idealization and so on.
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension or finite injective dimension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا