Do you want to publish a course? Click here

RAI-Net: Range-Adaptive LiDAR Point Cloud Frame Interpolation Network

83   0   0.0 ( 0 )
 Added by Lili Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

LiDAR point cloud frame interpolation, which synthesizes the intermediate frame between the captured frames, has emerged as an important issue for many applications. Especially for reducing the amounts of point cloud transmission, it is by predicting the intermediate frame based on the reference frames to upsample data to high frame rate ones. However, due to high-dimensional and sparse characteristics of point clouds, it is more difficult to predict the intermediate frame for LiDAR point clouds than videos. In this paper, we propose a novel LiDAR point cloud frame interpolation method, which exploits range images (RIs) as an intermediate representation with CNNs to conduct the frame interpolation process. Considering the inherited characteristics of RIs differ from that of color images, we introduce spatially adaptive convolutions to extract range features adaptively, while a high-efficient flow estimation method is presented to generate optical flows. The proposed model then warps the input frames and range features, based on the optical flows to synthesize the interpolated frame. Extensive experiments on the KITTI dataset have clearly demonstrated that our method consistently achieves superior frame interpolation results with better perceptual quality to that of using state-of-the-art video frame interpolation methods. The proposed method could be integrated into any LiDAR point cloud compression systems for inter prediction.



rate research

Read More

336 - Fan Lu , Guang Chen , Sanqing Qu 2020
LiDAR point cloud streams are usually sparse in time dimension, which is limited by hardware performance. Generally, the frame rates of mechanical LiDAR sensors are 10 to 20 Hz, which is much lower than other commonly used sensors like cameras. To overcome the temporal limitations of LiDAR sensors, a novel task named Point Cloud Frame Interpolation is studied in this paper. Given two consecutive point cloud frames, Point Cloud Frame Interpolation aims to generate intermediate frame(s) between them. To achieve that, we propose a novel framework, namely Point Cloud Frame Interpolation Network (PointINet). Based on the proposed method, the low frame rate point cloud streams can be upsampled to higher frame rates. We start by estimating bi-directional 3D scene flow between the two point clouds and then warp them to the given time step based on the 3D scene flow. To fuse the two warped frames and generate intermediate point cloud(s), we propose a novel learning-based points fusion module, which simultaneously takes two warped point clouds into consideration. We design both quantitative and qualitative experiments to evaluate the performance of the point cloud frame interpolation method and extensive experiments on two large scale outdoor LiDAR datasets demonstrate the effectiveness of the proposed PointINet. Our code is available at https://github.com/ispc-lab/PointINet.git.
We present an efficient voxelization method to encode the geometry and attributes of 3D point clouds obtained from autonomous vehicles. Due to the circular scanning trajectory of sensors, the geometry of LiDAR point clouds is inherently different from that of point clouds captured from RGBD cameras. Our method exploits these specific properties to representing points in cylindrical coordinates instead of conventional Cartesian coordinates. We demonstrate thatRegion Adaptive Hierarchical Transform (RAHT) can be extended to this setting, leading to attribute encoding based on a volumetric partition in cylindrical coordinates. Experimental results show that our proposed voxelization outperforms conventional approaches based on Cartesian coordinates for this type of data. We observe a significant improvement in attribute coding performance with 5-10%reduction in bitrate and octree representation with 35-45% reduction in bits.
176 - Yiming Zhao , Lin Bai , 2021
Projecting the point cloud on the 2D spherical range image transforms the LiDAR semantic segmentation to a 2D segmentation task on the range image. However, the LiDAR range image is still naturally different from the regular 2D RGB image; for example, each position on the range image encodes the unique geometry information. In this paper, we propose a new projection-based LiDAR semantic segmentation pipeline that consists of a novel network structure and an efficient post-processing step. In our network structure, we design a FID (fully interpolation decoding) module that directly upsamples the multi-resolution feature maps using bilinear interpolation. Inspired by the 3D distance interpolation used in PointNet++, we argue this FID module is a 2D version distance interpolation on $(theta, phi)$ space. As a parameter-free decoding module, the FID largely reduces the model complexity by maintaining good performance. Besides the network structure, we empirically find that our model predictions have clear boundaries between different semantic classes. This makes us rethink whether the widely used K-nearest-neighbor post-processing is still necessary for our pipeline. Then, we realize the many-to-one mapping causes the blurring effect that some points are mapped into the same pixel and share the same label. Therefore, we propose to process those occluded points by assigning the nearest predicted label to them. This NLA (nearest label assignment) post-processing step shows a better performance than KNN with faster inference speed in the ablation study. On the SemanticKITTI dataset, our pipeline achieves the best performance among all projection-based methods with $64 times 2048$ resolution and all point-wise solutions. With a ResNet-34 as the backbone, both the training and testing of our model can be finished on a single RTX 2080 Ti with 11G memory. The code is released.
Point clouds can be represented in many forms (views), typically, point-based sets, voxel-based cells or range-based images(i.e., panoramic view). The point-based view is geometrically accurate, but it is disordered, which makes it difficult to find local neighbors efficiently. The voxel-based view is regular, but sparse, and computation grows cubically when voxel resolution increases. The range-based view is regular and generally dense, however spherical projection makes physical dimensions distorted. Both voxel- and range-based views suffer from quantization loss, especially for voxels when facing large-scale scenes. In order to utilize different views advantages and alleviate their own shortcomings in fine-grained segmentation task, we propose a novel range-point-voxel fusion network, namely RPVNet. In this network, we devise a deep fusion framework with multiple and mutual information interactions among these three views and propose a gated fusion module (termed as GFM), which can adaptively merge the three features based on concurrent inputs. Moreover, the proposed RPV interaction mechanism is highly efficient, and we summarize it into a more general formulation. By leveraging this efficient interaction and relatively lower voxel resolution, our method is also proved to be more efficient. Finally, we evaluated the proposed model on two large-scale datasets, i.e., SemanticKITTI and nuScenes, and it shows state-of-the-art performance on both of them. Note that, our method currently ranks 1st on SemanticKITTI leaderboard without any extra tricks.
132 - Bin Zhao , Xuelong Li 2021
Video frame interpolation can up-convert the frame rate and enhance the video quality. In recent years, although the interpolation performance has achieved great success, image blur usually occurs at the object boundaries owing to the large motion. It has been a long-standing problem, and has not been addressed yet. In this paper, we propose to reduce the image blur and get the clear shape of objects by preserving the edges in the interpolated frames. To this end, the proposed Edge-Aware Network (EA-Net) integrates the edge information into the frame interpolation task. It follows an end-to-end architecture and can be separated into two stages, emph{i.e.}, edge-guided flow estimation and edge-protected frame synthesis. Specifically, in the flow estimation stage, three edge-aware mechanisms are developed to emphasize the frame edges in estimating flow maps, so that the edge-maps are taken as the auxiliary information to provide more guidance to boost the flow accuracy. In the frame synthesis stage, the flow refinement module is designed to refine the flow map, and the attention module is carried out to adaptively focus on the bidirectional flow maps when synthesizing the intermediate frames. Furthermore, the frame and edge discriminators are adopted to conduct the adversarial training strategy, so as to enhance the reality and clarity of synthesized frames. Experiments on three benchmarks, including Vimeo90k, UCF101 for single-frame interpolation and Adobe240-fps for multi-frame interpolation, have demonstrated the superiority of the proposed EA-Net for the video frame interpolation task.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا