No Arabic abstract
Interlayer valley excitons in bilayer MoS2 feature concurrently large oscillator strength and long lifetime, and hence represent an advantageous scenario for valleytronic applications. However, control of valley pseudospin of interlayer excitons in pristine bilayer MoS2, which lies at the heart of valleytronics, has remained elusive. Here we report the observation of highly circularly polarized photoluminescence from interlayer excitons of bilayer MoS2 with both optical and magnetic addressability. Under excitation of circularly polarized light near exciton resonance, interlayer excitons of bilayer MoS2 show a near-unity, but negative circular polarization. Significantly, by breaking time-reversal symmetry with an out-of-plane magnetic field, a record level of spontaneous valley polarization (7.7%/Tesla) is identified for interlayer excitons in bilayer MoS2. The giant valley polarization of the interlayer excitons in bilayer MoS2, together with the feasibility of electrical/optical/magnetic control and strong oscillator strength, provides a firm basis for the development of next-generation electronic and optoelectronic applications.
Coulomb bound electron-hole pairs, excitons, govern the optical properties of semi-conducting transition metal dichalcogenides like MoS$_2$ and WSe$_2$. We study optical transitions at the K-point for 2H homobilayer MoS$_2$ in Density Functional Theory (DFT) including excitonic effects and compare with reflectivity measurements in high quality samples encapsulated in hexagonal BN. In both calculated and measured spectra we find a strong interlayer exciton transition in energy between A and B intralayer excitons, observable for T$=4 -300$ K, whereas no such transition is observed for the monolayer in the same structure in this energy range. The interlayer excitons consist of an electron localized in one layer and a hole state delocalized over the bilayer, which results in the unusual combination of high oscillator strength and a static dipole moment. We also find signatures of interlayer excitons involving the second highest valence band (B) and compare absorption calculations for different bilayer stackings. For homotrilayer MoS$_2$ we also observe interlayer excitons and an energy splitting between different intralayer A-excitons originating from the middle and outer layers, respectively.
Van der Waals heterostructures provide a rich platform for emergent physics due to their tunable hybridization of electronic orbital- and spin-degrees of freedom. Here, we show that a heterostructure formed by twisted bilayer graphene sandwiched between ferromagnetic insulators develops flat bands stemming from the interplay between twist, exchange proximity and spin-orbit coupling. We demonstrate that in this flat-band regime, the spin degree of freedom is hybridized, giving rise to an effective triangular superlattice with valley as a degenerate pseudospin degree of freedom. Incorporating electronic interactions at half-filling leads to a spontaneous valley-mixed state, i.e., a correlated state in the valley sector with geometric frustration of the valley spinor. We show that an electric interlayer bias generates an artificial valley-orbit coupling in the effective model, controlling both the valley anisotropy and the microscopic details of the correlated state, with both phenomena understood in terms of a valley-Heisenberg model with easy-plane anisotropic exchange. Our results put forward twisted graphene encapsulated between magnetic van der Waals heterostructures as platforms to explore purely valley-correlated states in graphene.
We present in-depth measurements of the electronic band structure of the transition-metal dichalcogenides (TMDs) MoS2 and WS2 using angle-resolved photoemission spectroscopy, with focus on the energy splittings in their valence bands at the K point of the Brillouin zone. Experimental results are interpreted in terms of our parallel first-principles computations. We find that interlayer interaction only weakly contributes to the splitting in bulk WS2, resolving previous debates on its relative strength. We additionally find that across a range of TMDs, the band gap generally decreases with increasing magnitude of the valence-band splitting, molecular mass, or ratio of the out-of-plane to in-plane lattice constant. Our results provide an important reference for future studies of electronic properties of MoS2 and WS2 and their applications in spintronics and valleytronics devices.
Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can be stacked together with precise control to form novel van der Waals heterostructures for new functionalities2,6-9. One highly coveted but yet to be realized heterostructure is that of differing monolayer TMDs with type II band alignment10-12. Their application potential hinges on the fabrication, understanding, and control of bonded monolayers, with bound electrons and holes localized in individual monolayers, i.e. interlayer excitons. Here, we report the first observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by both photoluminescence and photoluminescence excitation spectroscopy. The energy and luminescence intensity of interlayer excitons are highly tunable by an applied vertical gate voltage, implying electrical control of the heterojunction band-alignment. Using time resolved photoluminescence, we find that the interlayer exciton is long-lived with a lifetime of about 1.8 ns, an order of magnitude longer than intralayer excitons13-16. Our work demonstrates the ability to optically pump interlayer electric polarization and provokes the immediate exploration of interlayer excitons for condensation phenomena, as well as new applications in 2D light-emitting diodes, lasers, and photovoltaic devices.
Single-layer transition metal dichalcogenides (TMDs) provide a promising material system to explore the electrons valley degree of freedom as a quantum information carrier. The valley degree of freedom in single-layer TMDs can be directly accessed by means of optical excitation. The rapid valley relaxation of optically excited electron-hole pairs (excitons) through the long-range electron-hole exchange interaction, however, has been a major roadblock. Theoretically such a valley relaxation does not occur for the recently discovered dark excitons, suggesting a potential route for long valley lifetimes. Here we investigate the valley dynamics of dark excitons in single-layer WSe2 by time-resolved photoluminescence spectroscopy. We develop a waveguide-based method to enable the detection of the dark exciton emission, which involves spin-forbidden optical transitions with an out-of-plane dipole moment. The valley degree of freedom of dark excitons is accessed through the valley-dependent Zeeman effect under an out-of-plane magnetic field. We find a short valley lifetime for the dark neutral exciton, likely due to the short-range electron-hole exchange, but long valley lifetimes exceeding several nanoseconds for dark charged excitons.