Bilocal holography is a constructive approach to the higher spin theory holographically dual to $O(N)$ vector models. In contrast to other approaches to bulk reconstruction, bilocal holography does not take input from the dual gravitational theory. The resulting map is a complete bulk/boundary mapping in that it maps the complete set of $O(N)$ invariant degrees of freedom in the CFT, to the complete set of higher spin degrees of freedom. After restricting to a suitable code subspace we demonstrate that bilocal holography naturally reproduces the quantum error correcting properties of holography and it gives a robust bulk (entanglement wedge) reconstruction. A gauge invariant entangled pair of CFT degrees of freedom are naturally smeared over a semicircle in the bulk spacetime, which is highly suggestive of bit threads. Finally, we argue that finite $N$ relations in the CFT, when interpreted in the dual AdS spacetime, can provide relations between degrees of freedom located near the boundary and degrees of freedom deep in the bulk.