An optimized PyCBC search for gravitational waves from intermediate-mass black hole mergers


Abstract in English

The detection of intermediate-mass black holes (IMBHs) i.e. those with mass $sim 100$-$10^5 M_odot$, is an emerging goal of gravitational-wave (GW) astronomy with wide implications for cosmology and tests of strong-field gravity. Current PyCBC-based searches for compact binary mergers, which matched filter the detector data against a set of template waveforms, have so far detected or confirmed several GW events. However, the sensitivity of these searches to signals arising from mergers of IMBH binaries is not optimal. Here, we present a new optimised PyCBC-based search for such signals. Our search benefits from using a targeted template bank, stricter signal-noise discriminators and a lower matched-filter frequency cut-off. In particular, for a population of simulated signals with isotropically distributed spins, we improve the sensitive volume-time product over previous PyCBC-based searches, at an inverse false alarm rate of 100 years, by a factor of 1.5 to 3 depending on the total binary mass. We deploy this new search on Advanced LIGO-Virgo data from the first half of the third observing run. The search does not identify any new significant IMBH binaries but does confirm the detection of the short-duration GW signal GW190521 with a false alarm rate of 1 in 727 years.

Download