Do you want to publish a course? Click here

HERALD: An Annotation Efficient Method to Detect User Disengagement in Social Conversations

222   0   0.0 ( 0 )
 Added by Weixin Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Open-domain dialog systems have a user-centric goal: to provide humans with an engaging conversation experience. User engagement is one of the most important metrics for evaluating open-domain dialog systems, and could also be used as real-time feedback to benefit dialog policy learning. Existing work on detecting user disengagement typically requires hand-labeling many dialog samples. We propose HERALD, an efficient annotation framework that reframes the training data annotation process as a denoising problem. Specifically, instead of manually labeling training samples, we first use a set of labeling heuristics to label training samples automatically. We then denoise the weakly labeled data using the Shapley algorithm. Finally, we use the denoised data to train a user engagement detector. Our experiments show that HERALD improves annotation efficiency significantly and achieves 86% user disengagement detection accuracy in two dialog corpora.



rate research

Read More

We describe a novel method for efficiently eliciting scalar annotations for dataset construction and system quality estimation by human judgments. We contrast direct assessment (annotators assign scores to items directly), online pairwise ranking aggregation (scores derive from annotator comparison of items), and a hybrid approach (EASL: Efficient Annotation of Scalar Labels) proposed here. Our proposal leads to increased correlation with ground truth, at far greater annotator efficiency, suggesting this strategy as an improved mechanism for dataset creation and manual system evaluation.
216 - Kaihui Liang , Austin Chau , Yu Li 2020
Gunrock 2.0 is built on top of Gunrock with an emphasis on user adaptation. Gunrock 2.0 combines various neural natural language understanding modules, including named entity detection, linking, and dialog act prediction, to improve user understanding. Its dialog management is a hierarchical model that handles various topics, such as movies, music, and sports. The system-level dialog manager can handle question detection, acknowledgment, error handling, and additional functions, making downstream modules much easier to design and implement. The dialog manager also adapts its topic selection to accommodate different users profile information, such as inferred gender and personality. The generation model is a mix of templates and neural generation models. Gunrock 2.0 is able to achieve an average rating of 3.73 at its latest build from May 29th to June 4th.
We introduce a deep neural network for automated sarcasm detection. Recent work has emphasized the need for models to capitalize on contextual features, beyond lexical and syntactic cues present in utterances. For example, different speakers will tend to employ sarcasm regarding different subjects and, thus, sarcasm detection models ought to encode such speaker information. Current methods have achieved this by way of laborious feature engineering. By contrast, we propose to automatically learn and then exploit user embeddings, to be used in concert with lexical signals to recognize sarcasm. Our approach does not require elaborate feature engineering (and concomitant data scraping); fitting user embeddings requires only the text from their previous posts. The experimental results show that our model outperforms a state-of-the-art approach leveraging an extensive set of carefully crafted features.
Conversational channels are changing the landscape of hybrid cloud service management. These channels are becoming important avenues for Site Reliability Engineers (SREs) %Subject Matter Experts (SME) to collaboratively work together to resolve an incident or issue. Identifying segmented conversations and extracting key insights or artefacts from them can help engineers to improve the efficiency of the incident remediation process by using information retrieval mechanisms for similar incidents. However, it has been empirically observed that due to the semi-formal behavior of such conversations (human language) they are very unique in nature and also contain lot of domain-specific terms. This makes it difficult to use the standard natural language processing frameworks directly, which are popularly used in standard NLP tasks. %It is important to identify the correct keywords and artefacts like symptoms, issue etc., present in the conversation chats. In this paper, we build a framework that taps into the conversational channels and uses various learning methods to (a) understand and extract key artefacts from conversations like diagnostic steps and resolution actions taken, and (b) present an approach to identify past conversations about similar issues. Experimental results on our dataset show the efficacy of our proposed method.
Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequently, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement these survey methods with broad, aggregated information derived from social media content provides a potential means for near real-time estimates at scale. These may, in turn, provide grist for supporting, evaluating and iteratively improving upon public health programs and interventions. We propose a novel model for automated mental health status quantification that incorporates user embeddings. This builds upon recent work exploring representation learning methods that induce embeddings by leveraging social media post histories. Such embeddings capture latent characteristics of individuals (e.g., political leanings) and encode a soft notion of homophily. In this paper, we investigate whether user embeddings learned from twitter post histories encode information that correlates with mental health statuses. To this end, we estimated user embeddings for a set of users known to be affected by depression and post-traumatic stress disorder (PTSD), and for a set of demographically matched `control users. We then evaluated these embeddings with respect to: (i) their ability to capture homophilic relations with respect to mental health status; and (ii) the performance of downstream mental health prediction models based on these features. Our experimental results demonstrate that the user embeddings capture similarities between users with respect to mental conditions, and are predictive of mental health.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا