Do you want to publish a course? Click here

HiddenCut: Simple Data Augmentation for Natural Language Understanding with Better Generalization

171   0   0.0 ( 0 )
 Added by Jiaao Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Fine-tuning large pre-trained models with task-specific data has achieved great success in NLP. However, it has been demonstrated that the majority of information within the self-attention networks is redundant and not utilized effectively during the fine-tuning stage. This leads to inferior results when generalizing the obtained models to out-of-domain distributions. To this end, we propose a simple yet effective data augmentation technique, HiddenCut, to better regularize the model and encourage it to learn more generalizable features. Specifically, contiguous spans within the hidden space are dynamically and strategically dropped during training. Experiments show that our HiddenCut method outperforms the state-of-the-art augmentation methods on the GLUE benchmark, and consistently exhibits superior generalization performances on out-of-distribution and challenging counterexamples. We have publicly released our code at https://github.com/GT-SALT/HiddenCut.



rate research

Read More

Adversarial training has been shown effective at endowing the learned representations with stronger generalization ability. However, it typically requires expensive computation to determine the direction of the injected perturbations. In this paper, we introduce a set of simple yet effective data augmentation strategies dubbed cutoff, where part of the information within an input sentence is erased to yield its restricted views (during the fine-tuning stage). Notably, this process relies merely on stochastic sampling and thus adds little computational overhead. A Jensen-Shannon Divergence consistency loss is further utilized to incorporate these augmented samples into the training objective in a principled manner. To verify the effectiveness of the proposed strategies, we apply cutoff to both natural language understanding and generation problems. On the GLUE benchmark, it is demonstrated that cutoff, in spite of its simplicity, performs on par or better than several competitive adversarial-based approaches. We further extend cutoff to machine translation and observe significant gains in BLEU scores (based upon the Transformer Base model). Moreover, cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
Data augmentation has been demonstrated as an effective strategy for improving model generalization and data efficiency. However, due to the discrete nature of natural language, designing label-preserving transformations for text data tends to be more challenging. In this paper, we propose a novel data augmentation framework dubbed CoDA, which synthesizes diverse and informative augmented examples by integrating multiple transformations organically. Moreover, a contrastive regularization objective is introduced to capture the global relationship among all the data samples. A momentum encoder along with a memory bank is further leveraged to better estimate the contrastive loss. To verify the effectiveness of the proposed framework, we apply CoDA to Transformer-based models on a wide range of natural language understanding tasks. On the GLUE benchmark, CoDA gives rise to an average improvement of 2.2% while applied to the RoBERTa-large model. More importantly, it consistently exhibits stronger results relative to several competitive data augmentation and adversarial training base-lines (including the low-resource settings). Extensive experiments show that the proposed contrastive objective can be flexibly combined with various data augmentation approaches to further boost their performance, highlighting the wide applicability of the CoDA framework.
98 - Zijian Zhao , Su Zhu , Kai Yu 2019
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. In this work, we propose a data augmentation method with atomic templates for SLU, which involves minimum human efforts. The atomic templates produce exemplars for fine-grained constituents of semantic representations. We propose an encoder-decoder model to generate the whole utterance from atomic exemplars. Moreover, the generator could be transferred from source domains to help a new domain which has little data. Experimental results show that our method achieves significant improvements on DSTC 2&3 dataset which is a domain adaptation setting of SLU.
In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequence-to-sequence generation based data augmentation framework that leverages one utterances same semantic alternatives in the training data. A novel diversity rank is incorporated into the utterance representation to make the model produce diverse utterances and these diversely augmented utterances help to improve the language understanding module. Experimental results on the Airline Travel Information System dataset and a newly created semantic frame annotation on Stanford Multi-turn, Multidomain Dialogue Dataset show that our framework achieves significant improvements of 6.38 and 10.04 F-scores respectively when only a training set of hundreds utterances is represented. Case studies also confirm that our method generates diverse utterances.
In this work, we explore joint energy-based model (EBM) training during the finetuning of pretrained text encoders (e.g., Roberta) for natural language understanding (NLU) tasks. Our experiments show that EBM training can help the model reach a better calibration that is competitive to strong baselines, with little or no loss in accuracy. We discuss three variants of energy functions (namely scalar, hidden, and sharp-hidden) that can be defined on top of a text encoder, and compare them in experiments. Due to the discreteness of text data, we adopt noise contrastive estimation (NCE) to train the energy-based model. To make NCE training more effective, we train an auto-regressive noise model with the masked language model (MLM) objective.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا