Do you want to publish a course? Click here

Optical lattice with spin-dependent sub-wavelength barriers

90   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze a tripod atom light coupling scheme characterized by two dark states playing the role of quasi-spin states. It is demonstrated that by properly configuring the coupling laser fields, one can create a lattice with spin-dependent sub-wavelength barriers. This allows to flexibly alter the atomic motion ranging from atomic dynamics in the effective brick-wall type lattice to free motion of atoms in one dark state and a tight binding lattice with a twice smaller periodicity for atoms in the other dark state. Between the two regimes, the spectrum undergoes significant changes controlled by the laser fields. The tripod lattice can be produced using current experimental techniques.



rate research

Read More

We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins interacting through a bosonic lattice field, which satisfies itself a Lieb-Robinson bound in the absence of spin-boson couplings. We apply these bounds to a system of trapped ions, and find that the propagation of spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes currently explored in experiments. We propose a scheme to test the bounds by measuring retarded correlation functions via the crystal fluorescence.
We propose and analyze a scheme for conditional state transfer in a Heisenberg $XXZ$ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also present a possible realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions.
We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic operators onto nonlocal spin operators and decompose the resulting dynamics in efficient steps with Trotter methods, yielding an overall protocol that employs only polynomial resources. The proposed scheme can be relevant in a variety of fields as condensed-matter or high-energy physics, where quantum simulations may solve problems intractable for classical computers.
Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.
Monopoles play a center role in gauge theories and topological matter. There are two fundamental types of monopoles in physics: vector monopoles and tensor monopoles. Examples of vector monopoles include the Dirac monopole in 3D and Yang monopole in 5D, which have been extensively studied and observed in condensed matter or artificial systems. However, tensor monopoles are less studied, and their observation has not been reported. Here we experimentally construct a tunable spin-1 Hamiltonian to generate a tensor monopole and then measure its unique features with superconducting quantum circuits. The energy structure of a 4D Weyl-like Hamiltonian with three-fold degenerate points acting as tensor monopoles is imaged. Through quantum-metric measurements, we report the first experiment that measures the Dixmier-Douady invariant, the topological charge of the tensor monopole. Moreover, we observe topological phase transitions characterized by the topological Dixmier-Douady invariant, rather than the Chern numbers as used for conventional monopoles in odd-dimensional spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا