A Survey of Knowledge Tracing


Abstract in English

High-quality education is one of the keys to achieving a more sustainable world. The recent COVID-19 epidemic has triggered the outbreak of online education, which has enabled both students and teachers to learn and teach at home. Meanwhile, it is now possible to record and research a large amount of learning data using online learning platforms in order to offer better intelligent educational services. Knowledge Tracing (KT), which aims to monitor students evolving knowledge state, is a fundamental and crucial task to support these intelligent services. Therefore, an increasing amount of research attention has been paid to this emerging area and considerable progress has been made. In this survey, we propose a new taxonomy of existing basic KT models from a technical perspective and provide a comprehensive overview of these models in a systematic manner. In addition, many variants of KT models have been proposed to capture more complete learning process. We then review these variants involved in three phases of the learning process: before, during, and after the student learning, respectively. Moreover, we present several typical applications of KT in different educational scenarios. Finally, we provide some potential directions for future research in this fast-growing field.

Download