Do you want to publish a course? Click here

Shadows and optical appearance of black bounces illuminated by a thin accretion disk

223   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emission, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.



rate research

Read More

We study the optical appearance of a thin accretion disk around a Schwarzschild black hole pierced by a cosmic string with a semi-analytic method of Luminet [11]. Direct and secondary images with different parameters observed by a distant observer is plotted. The cosmic string parameter s can modify the shape and size of the thin disk image. We calculate and plot the distribution of both redshift and observed flux as seen by distant observers at different inclination angles. Those distributions are dependent on the inclination angel of the observer and cosmic parameter s.
We consider a static, axially symmetric spacetime describing the superposition of a Schwarzschild black hole (BH) with a thin and heavy accretion disk. The BH-disk configuration is a solution of the Einstein field equations within the Weyl class. The disk is sourced by a distributional energy-momentum tensor and it is located at the equatorial plane. It can be interpreted as two streams of counter-rotating particles, yielding a total vanishing angular momentum. The phenomenology of the composed system depends on two parameters: the fraction of the total mass in the disk, $m$, and the location of the inner edge of the disk, $a$. We start by determining the sub-region of the space of parameters wherein the solution is physical, by requiring the velocity of the disk particles to be sub-luminal and real. Then, we study the null geodesic flow by performing backwards ray-tracing under two scenarios. In the first scenario the composed system is illuminated by the disk and in the second scenario the composed system is illuminated by a far-away celestial sphere. Both cases show that, as $m$ grows, the shadow becomes more prolate. Additionally, the first scenario makes clear that as $m$ grows, for fixed $a$, the geometrically thin disk appears optically enlarged, i.e., thicker, when observed from the equatorial plane. This is to due to light rays that are bent towards the disk, when backwards ray traced. In the second scenario, these light rays can cross the disk (which is assumed to be transparent) and may oscillate up to a few times before reaching the far away celestial sphere. Consequently, an almost equatorial observer sees different patches of the sky near the equatorial plane, as a chaotic mirage. As $mrightarrow 0$ one recovers the standard test, i.e., negligible mass, disk appearance.
89 - Alex Simpson 2021
Various spacetime candidates for traversable wormholes, regular black holes, and `black-bounces are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static, with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch -- some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called `exponential metric -- well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the `black-bounce to traversable wormhole case -- where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter $a$. This notion of `black-bounce is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable `bounce into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing-/ingoing Eddington-Finkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.
We have studied numerically the shadows of Bonnor black dihole through the technique of backward ray-tracing. The presence of magnetic dipole yields non-integrable photon motion, which affects sharply the shadow of the compact object. Our results show that there exists a critical value for the shadow. As the magnetic dipole parameter is less than the critical value, the shadow is a black disk, but as the magnetic dipole parameter is larger than the critical one, the shadow becomes a concave disk with eyebrows possessing a self-similar fractal structure. These behavior are very similar to those of the equal-mass and non-spinning Majumdar-Papapetrou binary black holes. However, we find that the two larger shadows and the smaller eyebrow-like shadows are joined together by the middle black zone for the Bonnor black dihole, which is different from that in the Majumdar-Papapetrou binary black holes spacetime where they are disconnected. With the increase of magnetic dipole parameter, the middle black zone connecting the main shadows and the eyebrow-like shadows becomes narrow. Our result show that the spacetime properties arising from the magnetic dipole yields the interesting patterns for the shadow casted by Bonnor black dihole.
We have studied polarized image of a Schwarzschild black hole with an equatorial thin accretion disk as photon couples to Weyl tensor. The birefringence of photon originating from the coupling affect the black hole shadow, the thin disk pattern and its luminosity distribution. We also analyze the observed polarized intensity in the sky plane. The observed polarized intensity in the bright region is stronger than that in the darker region. The stronger effect of the coupling on the observed polarized vector appears only in the bright region close to black hole. These features in the polarized image could help us to understand black hole shadow, the thin accretion disk and the coupling between photon and Weyl tensor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا