No Arabic abstract
In this paper, we find the existence of critical features hidden in Deep NeuralNetworks (DNNs), which are imperceptible but can actually dominate the outputof DNNs. We call these features dominant patterns. As the name suggests, for a natural image, if we add the dominant pattern of a DNN to it, the output of this DNN is determined by the dominant pattern instead of the original image, i.e., DNNs prediction is the same with the dominant patterns. We design an algorithm to find such patterns by pursuing the insensitivity in the feature space. A direct application of the dominant patterns is the Universal Adversarial Perturbations(UAPs). Numerical experiments show that the found dominant patterns defeat state-of-the-art UAP methods, especially in label-free settings. In addition, dominant patterns are proved to have the potential to attack downstream tasks in which DNNs share the same backbone. We claim that DNN-specific dominant patterns reveal some essential properties of a DNN and are of great importance for its feature analysis and robustness enhancement.
Deployment of deep neural networks (DNNs) in safety- or security-critical systems requires provable guarantees on their correct behaviour. A common requirement is robustness to adversarial perturbations in a neighbourhood around an input. In this paper we focus on the $L_0$ norm and aim to compute, for a trained DNN and an input, the maximal radius of a safe norm ball around the input within which there are no adversarial examples. Then we define global robustness as an expectation of the maximal safe radius over a test data set. We first show that the problem is NP-hard, and then propose an approximate approach to iteratively compute lower and upper bounds on the networks robustness. The approach is emph{anytime}, i.e., it returns intermediate bounds and robustness estimates that are gradually, but strictly, improved as the computation proceeds; emph{tensor-based}, i.e., the computation is conducted over a set of inputs simultaneously, instead of one by one, to enable efficient GPU computation; and has emph{provable guarantees}, i.e., both the bounds and the robustness estimates can converge to their optimal values. Finally, we demonstrate the utility of the proposed approach in practice to compute tight bounds by applying and adapting the anytime algorithm to a set of challenging problems, including global robustness evaluation, competitive $L_0$ attacks, test case generation for DNNs, and local robustness evaluation on large-scale ImageNet DNNs. We release the code of all case studies via GitHub.
Intensive research has been conducted on the verification and validation of deep neural networks (DNNs), aiming to understand if, and how, DNNs can be applied to safety critical applications. However, existing verification and validation techniques are limited by their scalability, over both the size of the DNN and the size of the dataset. In this paper, we propose a novel abstraction method which abstracts a DNN and a dataset into a Bayesian network (BN). We make use of dimensionality reduction techniques to identify hidden features that have been learned by hidden layers of the DNN, and associate each hidden feature with a node of the BN. On this BN, we can conduct probabilistic inference to understand the behaviours of the DNN processing data. More importantly, we can derive a runtime monitoring approach to detect in operational time rare inputs and covariate shift of the input data. We can also adapt existing structural coverage-guided testing techniques (i.e., based on low-level elements of the DNN such as neurons), in order to generate test cases that better exercise hidden features. We implement and evaluate the BN abstraction technique using our DeepConcolic tool available at https://github.com/TrustAI/DeepConcolic.
Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an optimal adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNNs internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs.
Great advancement in deep neural networks (DNNs) has led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: 1) empirical defenses, which can be adaptively attacked again without providing robustness certification; and 2) certifiably robust approaches, which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we focus on these certifiably robust approaches and provide the first work to perform large-scale systematic analysis of different robustness verification and training approaches. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as discuss the detailed methodologies for representative algorithms, 2) reveal the fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and several promising future directions for certified defenses for DNNs, and 4) provide an open-sourced unified platform to evaluate 20+ representative verification and corresponding robust training approaches on a wide range of DNNs.
Recent work has extensively shown that randomized perturbations of neural networks can improve robustness to adversarial attacks. The literature is, however, lacking a detailed compare-and-contrast of the latest proposals to understand what classes of perturbations work, when they work, and why they work. We contribute a detailed evaluation that elucidates these questions and benchmarks perturbation based defenses consistently. In particular, we show five main results: (1) all input perturbation defenses, whether random or deterministic, are equivalent in their efficacy, (2) attacks transfer between perturbation defenses so the attackers need not know the specific type of defense -- only that it involves perturbations, (3) a tuned sequence of noise layers across a network provides the best empirical robustness, (4) perturbation based defenses offer almost no robustness to adaptive attacks unless these perturbations are observed during training, and (5) adversarial examples in a close neighborhood of original inputs show an elevated sensitivity to perturbations in first and second-order analyses.