Do you want to publish a course? Click here

Efficient Hierarchical Exploration with Stable Subgoal Representation Learning

88   0   0.0 ( 0 )
 Added by Siyuan Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Goal-conditioned hierarchical reinforcement learning (HRL) serves as a successful approach to solving complex and temporally extended tasks. Recently, its success has been extended to more general settings by concurrently learning hierarchical policies and subgoal representations. However, online subgoal representation learning exacerbates the non-stationary issue of HRL and introduces challenges for exploration in high-level policy learning. In this paper, we propose a state-specific regularization that stabilizes subgoal embeddings in well-explored areas while allowing representation updates in less explored state regions. Benefiting from this stable representation, we design measures of novelty and potential for subgoals, and develop an efficient hierarchical exploration strategy that actively seeks out new promising subgoals and states. Experimental results show that our method significantly outperforms state-of-the-art baselines in continuous control tasks with sparse rewards and further demonstrate the stability and efficiency of the subgoal representation learning of this work, which promotes superior policy learning.



rate research

Read More

Sparse-reward domains are challenging for reinforcement learning algorithms since significant exploration is needed before encountering reward for the first time. Hierarchical reinforcement learning can facilitate exploration by reducing the number of decisions necessary before obtaining a reward. In this paper, we present a novel hierarchical reinforcement learning framework based on the compression of an invariant state space that is common to a range of tasks. The algorithm introduces subtasks which consist of moving between the state partitions induced by the compression. Results indicate that the algorithm can successfully solve complex sparse-reward domains, and transfer knowledge to solve new, previously unseen tasks more quickly.
Reinforcement learning (RL) promises to enable autonomous acquisition of complex behaviors for diverse agents. However, the success of current reinforcement learning algorithms is predicated on an often under-emphasised requirement -- each trial needs to start from a fixed initial state distribution. Unfortunately, resetting the environment to its initial state after each trial requires substantial amount of human supervision and extensive instrumentation of the environment which defeats the purpose of autonomous reinforcement learning. In this work, we propose Value-accelerated Persistent Reinforcement Learning (VaPRL), which generates a curriculum of initial states such that the agent can bootstrap on the success of easier tasks to efficiently learn harder tasks. The agent also learns to reach the initial states proposed by the curriculum, minimizing the reliance on human interventions into the learning. We observe that VaPRL reduces the interventions required by three orders of magnitude compared to episodic RL while outperforming prior state-of-the art methods for reset-free RL both in terms of sample efficiency and asymptotic performance on a variety of simulated robotics problems.
In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.
In this paper we introduce a simple approach for exploration in reinforcement learning (RL) that allows us to develop theoretically justified algorithms in the tabular case but that is also extendable to settings where function approximation is required. Our approach is based on the successor representation (SR), which was originally introduced as a representation defining state generalization by the similarity of successor states. Here we show that the norm of the SR, while it is being learned, can be used as a reward bonus to incentivize exploration. In order to better understand this transient behavior of the norm of the SR we introduce the substochastic successor representation (SSR) and we show that it implicitly counts the number of times each state (or feature) has been observed. We use this result to introduce an algorithm that performs as well as some theoretically sample-efficient approaches. Finally, we extend these ideas to a deep RL algorithm and show that it achieves state-of-the-art performance in Atari 2600 games when in a low sample-complexity regime.
177 - Fan Zhou , Zhoufan Zhu , Qi Kuang 2021
Although distributional reinforcement learning (DRL) has been widely examined in the past few years, there are two open questions people are still trying to address. One is how to ensure the validity of the learned quantile function, the other is how to efficiently utilize the distribution information. This paper attempts to provide some new perspectives to encourage the future in-depth studies in these two fields. We first propose a non-decreasing quantile function network (NDQFN) to guarantee the monotonicity of the obtained quantile estimates and then design a general exploration framework called distributional prediction error (DPE) for DRL which utilizes the entire distribution of the quantile function. In this paper, we not only discuss the theoretical necessity of our method but also show the performance gain it achieves in practice by comparing with some competitors on Atari 2600 Games especially in some hard-explored games.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا