Do you want to publish a course? Click here

Routes to realize the axion-insulator phase in MnBi$_{2}$Te$_{4}$(Bi$_{2}$Te$_{3}$)$_{n}$ family: a perspective

115   0   0.0 ( 0 )
 Added by Yufei Zhao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Axion, first postulated as a hypothetical particle in high-energy physics, is now extended to describe a novel topological magnetoelectric effect derived from the Chern-Simons theory in condensed matter systems. The recent discovered intrinsic magnetic topological insulators MnBi2Te4 and its derivatives have attracted great attention because of their potential as a material platform to realize such a quantized axion field. Since the magnetic exchange gap can bring the half-quantized anomalous Hall effect at the surface, an axion insulator manifests as quantum anomalous Hall and zero Hall plateau effects in the thin films. However, many puzzles about this material family remain elusive yet, such as the gapless surface state and the direct experimental evidence of the axion insulator. In this Perspective, we discuss the preconditions, manifestations and signatures of the axion-insulator phase, in the context of the development of the natural magnetic topological heterostructure MnBi2Te4(Bi2Te3)n family with various intriguing quantum phenomena. Recent theoretical and experimental efforts regarding the intrinsic magnetic topological insulators are summarized here to pave the way for this phenomenally developing field.



rate research

Read More

MnBi$_{2}$Te$_{4}/$(Bi$_{2}$Te$_{3}$)$_{n}$ materials system has recently generated strong interest as a natural platform for realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic MnBi$_{2}$Te$_{4}/$(Bi$_{2}$Te$_{3}$)$_{n}$ it is found that migration of Mn between MnBi$_{2}$T$e_{4}$ septuple layers (SLs) and otherwise non-magnetic Bi$_{2}$Te$_{3}$ quintuple layers (QLs) has systemic consequences - it induces ferromagnetic coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation (n $gtrsim$ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wavefunctions and a change of the surface bandstructure as compared to the ideal MnBi$_{2}$Te$_{4}/$(Bi$_{2}$Te$_{3}$)$_{n}$. These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets.
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion states. A key to assessing these novel properties is to tune the Fermi level in the exchange gap of the Dirac surface band. MnBi$_2$Te$_4$ possesses non-trivial band topology with intrinsic antiferromagnetic (AFM) state that can enable all of these quantum states, however, highly electron-doped nature of the MnBi$_2$Te$_4$ crystals obstructs the exhibition of the gapped topological surface states. Here, we tailor the material through Sb-substitution to reveal the gapped surface states in MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ (MBST). By shifting the Fermi level into the bulk band gap of MBST, we access the surface states and show a band gap of 50 meV at the Dirac point from quasi-particle interference (QPI) measured by scanning tunneling microscopy/spectroscopy (STM/STS). Surface-dominant conduction is confirmed below the Neel temperature through transport spectroscopy measured by multiprobe STM. The surface band gap is robust against out-of-plane magnetic field despite the promotion of field-induced ferromagnetism. The realization of bulk-insulating MTI with the large exchange gap offers a promising platform for exploring emergent topological phenomena.
We report a high frequency/high magnetic field electron spin resonance (HF-ESR) spectroscopy study in the sub-THz frequency domain of the two representatives of the family of magnetic topological insulators (MnBi$_{2}$Te$_{4}$)(Bi$_{2}$Te$_{3}$)$_{n}$ with $n = 0$ and 1. The HF-ESR measurements in the magnetically ordered state at a low temperature of $T = 4$ K combined with the calculations of the resonance modes showed that the spin dynamics in MnBi$_{text{4}}$Te$_{text{7}}$ is typical for an anisotropic easy-axis type ferromagnet (FM) whereas MnBi$_{text{2}}$Te$_{text{4}}$ demonstrates excitations of an anisotropic easy-axis type antiferromagnet (AFM). However, by applying the field stronger than a threshold value $sim 6$ T we observed in MnBi$_{text{2}}$Te$_{text{4}}$ a crossover from the AFM resonance modes to the FM modes which properties are very similar to the ferromagnetic response of MnBi$_{text{4}}$Te$_{text{7}}$. We attribute this remarkably unusual effect unexpected for a canonical easy-axis AFM, which, additionally, can be accurately reproduced by numerical calculations of the excitation modes, to the closeness of the strength of the AFM exchange and magnetic anisotropy energies which appears to be a very specific feature of this compound. Our experimental data evidences that the spin dynamics of the magnetic building blocks of these compounds, the Mn-based septuple layers (SLs), is inherently ferromagnetic featuring persisting short-range FM correlations far above the magnetic ordering temperature as soon as the SLs get decoupled either by introducing a nonmagnetic quintuple interlayer, as in MnBi$_{text{4}}$Te$_{text{7}}$, or by applying a moderate magnetic field, as in MnBi$_{text{2}}$Te$_{text{4}}$, which may have an effect on the surface topological band structure of these compounds.
Crystal growth of MnBi$_{2}$Te$_{4}$ has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi$_{2}$Te$_{4}$ can be scaled-up and strengthen it as a promising experimental platform for studies of a crossover between magnetic ordering and non-trivial topology. High-quality single crystals of MnBi$_{2}$Te$_{4}$ are grown by slow cooling within a narrow range between the melting points of Bi$_{2}$Te$_{3}$ (586 {deg}C) and MnBi$_{2}$Te$_{4}$ (600 {deg}C). Single crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies. Powders of MnBi$_{2}$Te$_{4}$ can be obtained at subsolidus temperatures, and a complementary thermochemical study establishes a limited high-temperature range of phase stability. Nevertheless, quenched powders are stable at room temperature and exhibit long-range antiferromagnetic ordering below 24 K. The expected Mn(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption and linear dichroism data. MnBi$_{2}$Te$_{4}$ exhibits a metallic type of resistivity in the range 4.5-300 K. The compound is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments provide evidence for a surface state forming a gapped Dirac cone.
A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi$_{2-x}$Sb$_x$Te$_{3-y}$Se$_y$ thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of BSTS on its top half by employing tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا