No Arabic abstract
Event extraction (EE) has considerably benefited from pre-trained language models (PLMs) by fine-tuning. However, existing pre-training methods have not involved modeling event characteristics, resulting in the developed EE models cannot take full advantage of large-scale unsupervised data. To this end, we propose CLEVE, a contrastive pre-training framework for EE to better learn event knowledge from large unsupervised data and their semantic structures (e.g. AMR) obtained with automatic parsers. CLEVE contains a text encoder to learn event semantics and a graph encoder to learn event structures respectively. Specifically, the text encoder learns event semantic representations by self-supervised contrastive learning to represent the words of the same events closer than those unrelated words; the graph encoder learns event structure representations by graph contrastive pre-training on parsed event-related semantic structures. The two complementary representations then work together to improve both the conventional supervised EE and the unsupervised liberal EE, which requires jointly extracting events and discovering event schemata without any annotated data. Experiments on ACE 2005 and MAVEN datasets show that CLEVE achieves significant improvements, especially in the challenging unsupervised setting. The source code and pre-trained checkpoints can be obtained from https://github.com/THU-KEG/CLEVE.
Recent developments in Natural Language Processing (NLP) demonstrate that large-scale, self-supervised pre-training can be extremely beneficial for downstream tasks. These ideas have been adapted to other domains, including the analysis of the amino acid sequences of proteins. However, to date most attempts on protein sequences rely on direct masked language model style pre-training. In this work, we design a new, adversarial pre-training method for proteins, extending and specializing similar advances in NLP. We show compelling results in comparison to traditional MLM pre-training, though further development is needed to ensure the gains are worth the significant computational cost.
Pre-trained self-supervised models such as BERT have achieved striking success in learning sequence representations, especially for natural language processing. These models typically corrupt the given sequences with certain types of noise, such as masking, shuffling, or substitution, and then try to recover the original input. However, such pre-training approaches are prone to learning representations that are covariant with the noise, leading to the discrepancy between the pre-training and fine-tuning stage. To remedy this, we present ContrAstive Pre-Training (CAPT) to learn noise invariant sequence representations. The proposed CAPT encourages the consistency between representations of the original sequence and its corrupted version via unsupervised instance-wise training signals. In this way, it not only alleviates the pretrain-finetune discrepancy induced by the noise of pre-training, but also aids the pre-trained model in better capturing global semantics of the input via more effective sentence-level supervision. Different from most prior work that focuses on a particular modality, comprehensive empirical evidence on 11 natural language understanding and cross-modal tasks illustrates that CAPT is applicable for both language and vision-language tasks, and obtains surprisingly consistent improvement, including 0.6% absolute gain on GLUE benchmarks and 0.8% absolute increment on $text{NLVR}^2$.
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence. Recently, many pre-trained language models for source code (e.g., CuBERT and CodeBERT) have been proposed to model the context of code and serve as a basis for downstream code intelligence tasks such as code search, code clone detection, and program translation. Current approaches typically consider the source code as a plain sequence of tokens, or inject the structure information (e.g., AST and data-flow) into the sequential model pre-training. To further explore the properties of programming languages, this paper proposes SynCoBERT, a syntax-guided multi-modal contrastive pre-training approach for better code representations. Specially, we design two novel pre-training objectives originating from the symbolic and syntactic properties of source code, i.e., Identifier Prediction (IP) and AST Edge Prediction (TEP), which are designed to predict identifiers, and edges between two nodes of AST, respectively. Meanwhile, to exploit the complementary information in semantically equivalent modalities (i.e., code, comment, AST) of the code, we propose a multi-modal contrastive learning strategy to maximize the mutual information among different modalities. Extensive experiments on four downstream tasks related to code intelligence show that SynCoBERT advances the state-of-the-art with the same pre-training corpus and model size.
Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.
End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training). Specifically, one model predicts the range/unit where the duration value falls in (R-pred); and the other predicts the exact duration value E-pred. Our best model -- E-pred, substantially outperforms previous work, and captures duration information more accurately than R-pred. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines.