Do you want to publish a course? Click here

Transmission Delay Minimization via Joint Power Control and Caching in Wireless HetNets

135   0   0.0 ( 0 )
 Added by Derya Malak
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A fundamental challenge in wireless heterogeneous networks (HetNets) is to effectively utilize the limited transmission and storage resources in the presence of increasing deployment density and backhaul capacity constraints. To alleviate bottlenecks and reduce resource consumption, we design optimal caching and power control algorithms for multi-hop wireless HetNets. We formulate a joint optimization framework to minimize the average transmission delay as a function of the caching variables and the signal-to-interference-plus-noise ratios (SINR) which are determined by the transmission powers, while explicitly accounting for backhaul connection costs and the power constraints. Using convex relaxation and rounding, we obtain a reduced-complexity formulation (RCF) of the joint optimization problem, which can provide a constant factor approximation to the globally optimal solution. We then solve RCF in two ways: 1) alternating optimization of the power and caching variables by leveraging biconvexity, and 2) joint optimization of power control and caching. We characterize the necessary (KKT) conditions for an optimal solution to RCF, and use strict quasi-convexity to show that the KKT points are Pareto optimal for RCF. We then devise a subgradient projection algorithm to jointly update the caching and power variables, and show that under appropriate conditions, the algorithm converges at a linear rate to the local minima of RCF, under general SINR conditions. We support our analytical findings with results from extensive numerical experiments.



rate research

Read More

Federated Learning (FL) refers to distributed protocols that avoid direct raw data exchange among the participating devices while training for a common learning task. This way, FL can potentially reduce the information on the local data sets that is leaked via communications. In order to provide formal privacy guarantees, however, it is generally necessary to put in place additional masking mechanisms. When FL is implemented in wireless systems via uncoded transmission, the channel noise can directly act as a privacy-inducing mechanism. This paper demonstrates that, as long as the privacy constraint level, measured via differential privacy (DP), is below a threshold that decreases with the signal-to-noise ratio (SNR), uncoded transmission achieves privacy for free, i.e., without affecting the learning performance. More generally, this work studies adaptive power allocation (PA) for decentralized gradient descent in wireless FL with the aim of minimizing the learning optimality gap under privacy and power constraints. Both orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) transmission with over-the-air-computing are studied, and solutions are obtained in closed form for an offline optimization setting. Furthermore, heuristic online methods are proposed that leverage iterative one-step-ahead optimization. The importance of dynamic PA and the potential benefits of NOMA versus OMA are demonstrated through extensive simulations.
In a Fog Radio Access Network (F-RAN) architecture, edge nodes (ENs), such as base stations, are equipped with limited-capacity caches, as well as with fronthaul links that can support given transmission rates from a cloud processor. Existing information-theoretic analyses of content delivery in F-RANs have focused on offline caching with separate content placement and delivery phases. In contrast, this work considers an online caching set-up, in which the set of popular files is time-varying and both cache replenishment and content delivery can take place in each time slot. The analysis is centered on the characterization of the long-term Normalized Delivery Time (NDT), which captures the temporal dependence of the coding latencies accrued across multiple time slots in the high signal-to- noise ratio regime. Online caching and delivery schemes based on reactive and proactive caching are investigated, and their performance is compared to optimal offline caching schemes both analytically and via numerical results.
In this work, we propose a content caching and delivery strategy to maximize throughput capacity in cache-enabled wireless networks. To this end, efficient betweenness (EB), which indicates the ratio of content delivery paths passing through a node, is first defined to capture the impact of content caching and delivery on network traffic load distribution. Aided by EB, throughput capacity is shown to be upper bounded by the minimal ratio of successful delivery probability (SDP) to EB among all nodes. Through effectively matching nodes EB with their SDP, the proposed strategy improves throughput capacity with low computation complexity. Simulation results show that the gap between the proposed strategy and the optimal one (obtained through exhausted search) is kept smaller than 6%.
In this paper, we study a wireless networked control system (WNCS) with $N ge 2$ sub-systems sharing a common wireless channel. Each sub-system consists of a plant and a controller and the control message must be delivered from the controller to the plant through the shared wireless channel. The wireless channel is unreliable due to interference and fading. As a result, a packet can be successfully delivered in a slot with a certain probability. A network scheduling policy determines how to transmit those control messages generated by such $N$ sub-systems and directly influences the transmission delay of control messages. We first consider the case that all sub-systems have the same sampling period. We characterize the stability condition of such a WNCS under the joint design of the control policy and the network scheduling policy by means of $2^N$ linear inequalities. We further simplify the stability condition into only one linear inequality for two special cases: the perfect-channel case where the wireless channel can successfully deliver a control message with certainty in each slot, and the symmetric-structure case where all sub-systems have identical system parameters. We then consider the case that different sub-systems can have different sampling periods, where we characterize a sufficient condition for stability.
Load balancing by proactively offloading users onto small and otherwise lightly-loaded cells is critical for tapping the potential of dense heterogeneous cellular networks (HCNs). Offloading has mostly been studied for the downlink, where it is generally assumed that a user offloaded to a small cell will communicate with it on the uplink as well. The impact of coupled downlink-uplink offloading is not well understood. Uplink power control and spatial interference correlation further complicate the mathematical analysis as compared to the downlink. We propose an accurate and tractable model to characterize the uplink SINR and rate distribution in a multi-tier HCN as a function of the association rules and power control parameters. Joint uplink-downlink rate coverage is also characterized. Using the developed analysis, it is shown that the optimal degree of channel inversion (for uplink power control) increases with load imbalance in the network. In sharp contrast to the downlink, minimum path loss association is shown to be optimal for uplink rate. Moreover, with minimum path loss association and full channel inversion, uplink SIR is shown to be invariant of infrastructure density. It is further shown that a decoupled association---employing differing association strategies for uplink and downlink---leads to significant improvement in joint uplink-downlink rate coverage over the standard coupled association in HCNs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا