$P_c$ resonances are studied in the approach of quark model and group theory. It is found that there are totally 17 possible pentaquark states with the quark contents $q^3Q bar Q$ ($q$ are $u$ and $d$ quarks; $Q$ is $c$ quark) in the compact pentaquark picture, where the hidden heavy pentaquark states may take the color singlet-singlet ($[111]_{{qqq}}otimes [111]_{{c bar c}}$) and color octet-octet ($[21]_{{qqq}}otimes [21]_{{c bar c}}$) configurations. The partial decay widths of hidden heavy pentaquark states are calculated for all possible decay channels. The results show that the $pJ/psi$ is the dominant decay channel for both the spin $3/2$ and $1/2$ pentaquark states, and indicate that the $P_c(4440)$ may not be a compact pentaquark state while $P_c(4312)$ and $P_c(4457)$ could be the spin-$frac{1}{2}$ and spin-$frac{3}{2}$ pentaquark states, respectively.