Do you want to publish a course? Click here

Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity

95   0   0.0 ( 0 )
 Added by Sai Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefore, implementing high-fidelity, robust and fast quantum gates is highly desired. Here, we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity. In our proposal, the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally, leading to high-fidelity quantum gates in a simple setup. Besides, our scheme is readily realizable in physical system currently pursued for implementation of quantum computation. Therefore, our proposal represents a promising way towards fault-tolerant geometric quantum computation.



rate research

Read More

Fast and robust quantum control protocols are often based on an idealised approximate description of the relevant quantum system. While this may provide a performance which is close to optimal, improvements can be made by incorporating elements of the full system representation. We propose a new technique for such scenarios, called enhanced shortcuts to adiabaticity (eSTA). The eSTA method works for previously intractable Hamiltonians by providing an analytical correction to existing STA protocols. This correction can be easily calculated and the resulting protocols are outside the class of STA schemes. We demonstrate the effectiveness of the method for three distinct cases: manipulation of an internal atomic state beyond the rotating wave approximation, transport of a neutral atom in an optical Gaussian trap and transport of two trapped ions in an anharmonic trap.
183 - P. Z. Zhao , G. F. Xu , D. M. Tong 2019
Previous schemes of nonadiabatic holonomic quantum computation were focused mainly on realizing a universal set of elementary gates. Multiqubit controlled gates could be built by decomposing them into a series of the universal gates. In this article, we propose an approach for realizing nonadiabatic holonomic multiqubit controlled gates in which a $(n+1)$-qubit controlled-$(boldsymbol{mathrm{n}cdot mathrm{sigma}})$ gate is realized by $(2n-1)$ basic operations instead of decomposing it into the universal gates, whereas an $(n+1)$-qubit controlled arbitrary rotation gate can be obtained by combining only two such controlled-$(boldsymbol{mathrm{n}cdot mathrm{sigma}})$ gates. Our scheme greatly reduces the operations of nonadiabatic holonomic quantum computation.
123 - Yue Ban , Xi Chen , E. Torrontegui 2020
The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.
168 - S. Iba~nez , Xi Chen , 2012
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we examine the capabilities of superadiabatic iterations to produce a sequence of shortcuts to adiabaticity. The general formalism is worked out as well as examples for population inversion in a two-level system.
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the energy cost of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption are possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and recovered by perfect regenerative braking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا