No Arabic abstract
Decentralized exchanges (DEXes) have introduced an innovative trading mechanism, where it is not necessary to match buy-orders and sell-orders to execute a trade. DEXes execute each trade individually, and the exchange rate is automatically determined by the ratio of assets reserved in the market. Therefore, apart from trading, financial players can also liquidity providers, benefiting from transaction fees from trades executed in DEXes. Although liquidity providers are essential for the functionality of DEXes, it is not clear how liquidity providers behave in such markets.In this paper, we aim to understand how liquidity providers react to market information and how they benefit from providing liquidity in DEXes. We measure the operations of liquidity providers on Uniswap and analyze how they determine their investment strategy based on market changes. We also reveal their returns and risks of investments in different trading pair categories, i.e., stable pairs, normal pairs, and exotic pairs. Further, we investigate the movement of liquidity between trading pools. To the best of our knowledge, this is the first work that systematically studies the behavior of liquidity providers in DEXes.
We study the pricing and hedging of European spread options on correlated assets when, in contrast to the standard framework and consistent with imperfect liquidity markets, the trading in the stock market has a direct impact on stocks prices. We consider a partial-impact and a full-impact model in which the price impact is caused by every trading strategy in the market. The generalized Black-Scholes pricing partial differential equations (PDEs) are obtained and analysed. We perform a numerical analysis to exhibit the illiquidity effect on the replication strategy of the European spread option. Compared to the Black-Scholes model or a partial impact model, the trader in the full impact model buys more stock to replicate the option, and this leads to a higher option price.
One of the exciting recent developments in decentralized finance (DeFi) has been the development of decentralized cryptocurrency exchanges that can autonomously handle conversion between different cryptocurrencies. Decentralized exchange protocols such as Uniswap, Curve and other types of Automated Market Makers (AMMs) maintain a liquidity pool (LP) of two or more assets constrained to maintain at all times a mathematical relation to each other, defined by a given function or curve. Examples of such functions are the constant-sum and constant-product AMMs. Existing systems however suffer from several challenges. They require external arbitrageurs to restore the price of tokens in the pool to match the market price. Such activities can potentially drain resources from the liquidity pool. In particular, dramatic market price changes can result in low liquidity with respect to one or more of the assets and reduce the total value of the LP. We propose in this work a new approach to constructing the AMM by proposing the idea of dynamic curves. It utilizes input from a market price oracle to modify the mathematical relationship between the assets so that the pool price continuously and automatically adjusts to be identical to the market price. This approach eliminates arbitrage opportunities and, as we show through simulations, maintains liquidity in the LP for all assets and the total value of the LP over a wide range of market prices.
Decentralized exchanges (DEXs) allow parties to participate in financial markets while retaining full custody of their funds. However, the transparency of blockchain-based DEX in combination with the latency for transactions to be processed, makes market-manipulation feasible. For instance, adversaries could perform front-running -- the practice of exploiting (typically non-public) information that may change the price of an asset for financial gain. In this work we formalize, analytically exposit and empirically evaluate an augmented variant of front-running: sandwich attacks, which involve front- and back-running victim transactions on a blockchain-based DEX. We quantify the probability of an adversarial trader being able to undertake the attack, based on the relative positioning of a transaction within a blockchain block. We find that a single adversarial trader can earn a daily revenue of over several thousand USD when performing sandwich attacks on one particular DEX -- Uniswap, an exchange with over 5M USD daily trading volume by June 2020. In addition to a single-adversary game, we simulate the outcome of sandwich attacks under multiple competing adversaries, to account for the real-world trading environment.
Latency (i.e., time delay) in electronic markets affects the efficacy of liquidity taking strategies. During the time liquidity takers process information and send marketable limit orders (MLOs) to the exchange, the limit order book (LOB) might undergo updates, so there is no guarantee that MLOs are filled. We develop a latency-optimal trading strategy that improves the marksmanship of liquidity takers. The interaction between the LOB and MLOs is modelled as a marked point process. Each MLO specifies a price limit so the order can receive worse prices and quantities than those the liquidity taker targets if the updates in the LOB are against the interest of the trader. In our model, the liquidity taker balances the tradeoff between missing trades and the costs of walking the book. We employ techniques of variational analysis to obtain the optimal price limit of each MLO the agent sends. The price limit of a MLO is characterized as the solution to a new class of forward-backward stochastic differential equations (FBSDEs) driven by random measures. We prove the existence and uniqueness of the solution to the FBSDE and numerically solve it to illustrate the performance of the latency-optimal strategies.
Expanding on techniques of concentration of measure, we develop a quantitative framework for modeling liquidity risk using convex risk measures. The fundamental objects of study are curves of the form $(rho(lambda X))_{lambda ge 0}$, where $rho$ is a convex risk measure and $X$ a random variable, and we call such a curve a emph{liquidity risk profile}. The shape of a liquidity risk profile is intimately linked with the tail behavior of the underlying $X$ for some notable classes of risk measures, namely shortfall risk measures. We exploit this link to systematically bound liquidity risk profiles from above by other real functions $gamma$, deriving tractable necessary and sufficient conditions for emph{concentration inequalities} of the form $rho(lambda X) le gamma(lambda)$, for all $lambda ge 0$. These concentration inequalities admit useful dual representations related to transport inequalities, and this leads to efficient uniform bounds for liquidity risk profiles for large classes of $X$. On the other hand, some modest new mathematical results emerge from this analysis, including a new characterization of some classical transport-entropy inequalities. Lastly, the analysis is deepened by means of a surprising connection between time consistency properties of law invariant risk measures and the tensorization of concentration inequalities.