Early Exiting with Ensemble Internal Classifiers


Abstract in English

As a simple technique to accelerate inference of large-scale pre-trained models, early exiting has gained much attention in the NLP community. It allows samples to exit early at internal classifiers without passing through the entire model. Most existing work usually trains the internal classifiers independently and employs an exiting strategy to decide whether or not to exit based on the confidence of the current internal classifier. However, none of these works takes full advantage of the fact that the internal classifiers are trained to solve the same task therefore can be used to construct an ensemble. In this paper, we show that a novel objective function for the training of the ensemble internal classifiers can be naturally induced from the perspective of ensemble learning and information theory. The proposed training objective consists of two terms: one for accuracy and the other for the diversity of the internal classifiers. In contrast, the objective used in prior work is exactly the accuracy term of our training objective therefore only optimizes the accuracy but not diversity. Further, we propose a simple voting-based strategy that considers predictions of all the past internal classifiers to infer the correct label and decide whether to exit. Experimental results on various NLP tasks show that our proposed objective function and voting-based strategy can achieve better accuracy-speed trade-offs.

Download