Do you want to publish a course? Click here

A Search for Pulsar Companions Around Low-Mass White Dwarfs

80   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a search for pulsars at the positions of eight low-mass white dwarfs and one higher-mass white dwarf with the 100-m Effelsberg Radio Telescope. These systems have orbital parameters suggesting that their unseen companions are either massive white dwarfs or neutron stars. Our observations were performed at 1.36 GHz, reaching sensitivities of 0.1-0.2 mJy. We searched our data accounting for the possible acceleration and jerk of the pulsar signals due to orbital motion, but found no significant pulsar signals. Considering our result jointly with 20 non-detections of similar systems with the Greenbank Radio Telescope, we infer $f_{rm NS}leq 0.10$, for the fraction of NSs orbiting these white dwarfs. We discuss the sensitivity of this result to the underlying assumptions and conclude with a brief discussion on the prospects of targeted surveys for discovering millisecond pulsars.



rate research

Read More

252 - Marcel A. Agueros 2009
We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M < 0.4 M_Sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive WD or a neutron star as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs (e.g., Benvenuto & De Vito 2005), suggesting that the SDSS LMWDs may have neutron star companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al. (2007), who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as ordinary WDs). We discuss the constraints our non-detections place on the probability P_MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P_MSP < 10 +4 -2 %.
Low-mass white dwarfs can either be produced in low-mass X-ray binaries by stable mass transfer to a neutron star, or in a common-envelope phase with a heavier white dwarf companion. We have searched 8 low-mass white dwarf candidates recently identified in the Sloan Digital Sky Survey for radio pulsations from pulsar companions, using the Green Bank Telescope at 340MHz. We have found no pulsations down to flux densities of 0.6-0.8 mJy/kpc^2 and conclude that a given low-mass helium-core white dwarf has a probability of < 0.18+-0.05 of being in a binary with a radio pulsar.
104 - P. D. Dobbie 2004
We have undertaken a detailed near-IR spectroscopic analysis of eight notable white dwarfs, predominantly of southern declination. In each case the spectrum failed to reveal compelling evidence for the presence of a spatially unresolved, cool, late-type companion. Therefore, we have placed an approximate limit on the spectral-type of a putative companion to each degenerate. From these limits we conclude that if GD659, GD50, GD71 or WD2359-434 possesses an unresolved companion then most probably it is substellar in nature (M<0.072Msun). Furthermore, any spatially unresolved late-type companion to RE J0457-280, RE J0623-374, RE J0723-274 or RE J2214-491 most likely has M<0.082Msun. These results imply that if weak accretion from a nearby late-type companion is the cause of the unusual photospheric composition observed in a number of these degenerates then the companions are of very low mass, beyond the detection thresholds of this study. Furthermore, these results do not contradict a previously noted deficit of very-low-mass stellar and brown dwarf companions to main sequence F,G,K and early-M type primaries (a<1000AU).
116 - J. Nordhaus , D. S. Spiegel 2012
The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass loss during the giant phases; previous studies have not incorporated changes in the primarys spin. For companions ranging from Jupiters mass to ~0.3 Msun and primaries ranging from 1-3 Msun, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the white dwarf habitable zone requires scattering from a several-AU orbit to a high-eccentricity orbit (with a periastron of ~Rsun) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.
154 - E. Hogan 2009
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower (< 500 K) than the coolest brown dwarfs currently observed. These ultra-low mass substellar objects would have spectral types > T8.5 and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 - 8 solar masses, i.e., early B to mid F). This paper presents the results of a multi-epoch J band common proper motion survey of 23 nearby equatorial and northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that < 5% of white dwarfs have substellar companions with effective temperatures > 500 K between projected physical separations of 60 - 200 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا