Do you want to publish a course? Click here

Enhanced Doubly Robust Learning for Debiasing Post-click Conversion Rate Estimation

87   0   0.0 ( 0 )
 Added by Siyuan Guo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Post-click conversion, as a strong signal indicating the user preference, is salutary for building recommender systems. However, accurately estimating the post-click conversion rate (CVR) is challenging due to the selection bias, i.e., the observed clicked events usually happen on users preferred items. Currently, most existing methods utilize counterfactual learning to debias recommender systems. Among them, the doubly robust (DR) estimator has achieved competitive performance by combining the error imputation based (EIB) estimator and the inverse propensity score (IPS) estimator in a doubly robust way. However, inaccurate error imputation may result in its higher variance than the IPS estimator. Worse still, existing methods typically use simple model-agnostic methods to estimate the imputation error, which are not sufficient to approximate the dynamically changing model-correlated target (i.e., the gradient direction of the prediction model). To solve these problems, we first derive the bias and variance of the DR estimator. Based on it, a more robust doubly robust (MRDR) estimator has been proposed to further reduce its variance while retaining its double robustness. Moreover, we propose a novel double learning approach for the MRDR estimator, which can convert the error imputation into the general CVR estimation. Besides, we empirically verify that the proposed learning scheme can further eliminate the high variance problem of the imputation learning. To evaluate its effectiveness, extensive experiments are conducted on a semi-synthetic dataset and two real-world datasets. The results demonstrate the superiority of the proposed approach over the state-of-the-art methods. The code is available at https://github.com/guosyjlu/MRDR-DL.



rate research

Read More

Click-through rate (CTR) prediction is a critical task in online advertising systems. Most existing methods mainly model the feature-CTR relationship and suffer from the data sparsity issue. In this paper, we propose DeepMCP, which models other types of relationships in order to learn more informative and statistically reliable feature representations, and in consequence to improve the performance of CTR prediction. In particular, DeepMCP contains three parts: a matching subnet, a correlation subnet and a prediction subnet. These subnets model the user-ad, ad-ad and feature-CTR relationship respectively. When these subnets are jointly optimized under the supervision of the target labels, the learned feature representations have both good prediction powers and good representation abilities. Experiments on two large-scale datasets demonstrate that DeepMCP outperforms several state-of-the-art models for CTR prediction.
Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.
Improving the performance of click-through rate (CTR) prediction remains one of the core tasks in online advertising systems. With the rise of deep learning, CTR prediction models with deep networks remarkably enhance model capacities. In deep CTR models, exploiting users historical data is essential for learning users behaviors and interests. As existing CTR prediction works neglect the importance of the temporal signals when embed users historical clicking records, we propose a time-aware attention model which explicitly uses absolute temporal signals for expressing the users periodic behaviors and relative temporal signals for expressing the temporal relation between items. Besides, we propose a regularized adversarial sampling strategy for negative sampling which eases the classification imbalance of CTR data and can make use of the strong guidance provided by the observed negative CTR samples. The adversarial sampling strategy significantly improves the training efficiency, and can be co-trained with the time-aware attention model seamlessly. Experiments are conducted on real-world CTR datasets from both in-station and out-station advertising places.
As recommender systems send a massive amount of content to keep users engaged, users may experience fatigue which is contributed by 1) an overexposure to irrelevant content, 2) boredom from seeing too many similar recommendations. To address this problem, we consider an online learning setting where a platform learns a policy to recommend content that takes user fatigue into account. We propose an extension of the Dependent Click Model (DCM) to describe users behavior. We stipulate that for each piece of content, its attractiveness to a user depends on its intrinsic relevance and a discount factor which measures how many similar contents have been shown. Users view the recommended content sequentially and click on the ones that they find attractive. Users may leave the platform at any time, and the probability of exiting is higher when they do not like the content. Based on users feedback, the platform learns the relevance of the underlying content as well as the discounting effect due to content fatigue. We refer to this learning task as fatigue-aware DCM Bandit problem. We consider two learning scenarios depending on whether the discounting effect is known. For each scenario, we propose a learning algorithm which simultaneously explores and exploits, and characterize its regret bound.
Infinite horizon off-policy policy evaluation is a highly challenging task due to the excessively large variance of typical importance sampling (IS) estimators. Recently, Liu et al. (2018a) proposed an approach that significantly reduces the variance of infinite-horizon off-policy evaluation by estimating the stationary density ratio, but at the cost of introducing potentially high biases due to the error in density ratio estimation. In this paper, we develop a bias-reduced augmentation of their method, which can take advantage of a learned value function to obtain higher accuracy. Our method is doubly robust in that the bias vanishes when either the density ratio or the value function estimation is perfect. In general, when either of them is accurate, the bias can also be reduced. Both theoretical and empirical results show that our method yields significant advantages over previous methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا