Do you want to publish a course? Click here

Development of a new wideband heterodyne receiver system for the Osaka 1.85-m mm-submm telescope -- Corrugated horn & Optics covering 210-375 GHz band

328   0   0.0 ( 0 )
 Added by Yasumasa Yamasaki
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The corrugated horn is a high performance feed often used in radio telescopes. There has been a growing demand for wideband optics and corrugated horns in millimeter and submillimeter-wave receivers. It improves the observation efficiency and allows us to observe important emission lines such as CO in multiple excited states simultaneously. However, in the millimeter/submillimeter band, it has been challenging to create a conical corrugated horn with a fractional bandwidth of ~60% because the wavelength is very short, making it difficult to make narrow corrugations. In this study, we designed a conical corrugated horn with good return loss, low cross-polarization, and symmetric beam pattern in the 210-375GHz band (56% fractional bandwidth) by optimizing the dimensions of the corrugations. The corrugated horn was installed on the Osaka 1.85-m mm-submm telescope with the matched frequency-independent optics, and simultaneous observations of 12CO, 13CO, and C18O (J = 2-1, 3-2) were successfully made. In this paper, we describe the new design of the corrugated horn and report the performance evaluation results including the optics.



rate research

Read More

We have developed a wideband receiver system for simultaneous observations in CO lines of J = 2-1 and J = 3-2 transitions using the Osaka 1.85-m mm-submm telescope. As a frequency separation system, we developed multiplexers that connect three types of diplexers, each consisting of branch-line couplers and high-pass filters. The radio frequency (RF) signal is eventually distributed into four frequency bands, each of which is fed to a superconductor-insulator-superconductor (SIS) mixer. The RF signal from the horn is divided into two frequency bands by a wideband diplexer with a fractional bandwidth of 56%, and then each frequency band is further divided into two bands by each diplexer. The developed multiplexers were designed, fabricated, and characterized using a vector network analyzer. The measurement results showed good agreement with the simulation. The receiver noise temperature was measured by connecting the SIS-mixers, one of which has a wideband 4-21GHz intermediate frequency (IF) output. The receiver noise temperatures were measured to be ~70K in the 220GHz band, ~100K in the 230GHz band, 110-175K in the 330GHz band, and 150-250K in the 345GHz band. This receiver system has been installed on the 1.85-m telescope at the Nobeyama Radio Observatory. We succeeded in the simultaneous observations of six CO isotopologue lines with the transitions of J = 2-1 and J = 3-2 toward the Orion KL as well as the on-the-fly (OTF) mappings toward the Orion KL and W 51.
We report the current status of the 1.85-m mm-submm telescope installed at the Nobeyama Radio Observatory (altitude 1400 m) and the future plan. The scientific goal is to reveal the physical/chemical properties of molecular clouds in the Galaxy by obtaining large-scale distributions of molecular gas with an angular resolution of several arcminutes. A semi-automatic observation system created mainly in Python on Linux-PCs enables effective operations. A large-scale CO $J=$2--1 survey of the molecular clouds (e.g., Orion-A/B, Cygnus-X/OB7, Taurus-California-Perseus complex, and Galactic Plane), and a pilot survey of emission lines from minor molecular species toward Orion clouds have been conducted so far. The telescope also is providing the opportunities for technical demonstrations of new devices and ideas. For example, the practical realizations of PLM (Path Length Modulator) and waveguide-based sideband separating filter, installation of the newly designed waveguide-based circular polarizer and OMT (Orthomode Transducer), and so on. As the next step, we are now planning to relocate the telescope to San Pedro de Atacama in Chile (altitude 2500 m), and are developing very wideband receiver covering 210--375 GHz (corresponding to Bands 6--7 of ALMA) and full-automatic observation system. The new telescope system will provide large-scale data in the spatial and frequency domain of molecular clouds of Galactic plane and Large/Small Magellanic Clouds at the southern hemisphere. The data will be precious for the comparison with those of extra-galactic ones that will be obtained with ALMA as the Bands 6/7 are the most efficient frequency bands for the surveys in extra-galaxies for ALMA.
ALMA has been operating since 2011, but has not yet been populated with the full suite of intended frequency bands. In particular, ALMA Band 2 (67-90 GHz) is the final band in the original ALMA band definition to be approved for production. We aim to produce a wideband, tuneable, sideband-separating receiver with 28 GHz of instantaneous bandwidth per polarisation operating in the sky frequency range 67-116 GHz. Our design anticipates new ALMA requirements following the recommendations in the 2030 ALMA Development Roadmap. The cryogenic cartridge is designed to be compatible with the ALMA Band 2 cartridge slot, where the coldest components -- the feedhorns, orthomode transducers, and cryogenic low noise amplifiers -- operate at a temperature of 15 K. We use multiple simulation methods and tools to optimise our designs for both the passive optics and the active components. The cryogenic cartridge interfaces with a room temperature cartridge hosting the local oscillator (LO) and the downconverter module. This warm cartridge is largely based on GaAs semiconductor technology and is optimised to match the cryogenic receiver bandwidth with the required instantaneous LO tuning range. Our collaboration has designed, fabricated, and tested multiple technical solutions for each of the components, producing a state-of-the-art receiver covering the full ALMA Band 2 & 3 atmospheric window. The receiver is suitable for deployment on ALMA in the coming years, and is capable of dual-polarisation, sideband-separating observations in intermediate frequency bands spanning 4-18 GHz, for a total of 28 GHz on-sky bandwidth per polarisation channel. We conclude that the 67-116 GHz wideband implementation for ALMA Band 2 is now feasible, and this receiver is a compelling instrumental upgrade that will enhance observational capabilities and scientific reach.
The Atacama Large Millimeter/sub-millimeter Array (ALMA) is already revolutionising our understanding of the Universe. However, ALMA is not yet equipped with all of its originally planned receiver bands, which will allow it to observe over the full range of frequencies from 35-950 GHz accessible through the Earths atmosphere. In particular Band 2 (67-90 GHz) has not yet been approved for construction. Recent technological developments in cryogenic monolithic microwave integrated circuit (MMIC) high electron mobility transistor (HEMT) amplifier and orthomode transducer (OMT) design provide an opportunity to extend the originally planned on-sky bandwidth, combining ALMA Bands 2 and 3 into one receiver cartridge covering 67-116 GHz. The IF band definition for the ALMA project took place two decades ago, when 8 GHz of on-sky bandwidth per polarisation channel was an ambitious goal. The new receiver design we present here allows the opportunity to expand ALMAs wideband capabilities, anticipating future upgrades across the entire observatory. Expanding ALMAs instantaneous bandwidth is a high priority, and provides a number of observational advantages, including lower noise in continuum observations, the ability to probe larger portions of an astronomical spectrum for, e.g., widely spaced molecular transitions, and the ability to scan efficiently in frequency space to perform surveys where the redshift or chemical complexity of the object is not known a priori. Wider IF bandwidth also reduces uncertainties in calibration and continuum subtraction that might otherwise compromise science objectives. Here we provide an overview of the component development and overall design for this wideband 67-116 GHz cryogenic receiver cartridge, designed to operate from the Band 2 receiver cartridge slot in the current ALMA front end receiver cryostat.
We report the current status of the NASCO (NAnten2 Super CO survey as legacy) project which aims to provide all-sky CO data cube of southern hemisphere using the NANTEN2 4-m submillimeter telescope installed at the Atacama Desert through developing a new multi-beam receiver and a new telescope control system. The receiver consists of 5 beams. The four beams, located at the four corners of a square with the beam separation of 720$$, are installed with a 100 GHz band SIS receiver having 2-polarization sideband-separation filter. The other beam, located at the optical axis, is installed with a 200 GHz band SIS receiver having 2-polarization sideband-separation filter. The cooled component is modularized for each beam, and cooled mirrors are used. The IF bandwidths are 8 and 4 GHz for 100 and 200 GHz bands, respectively. Using XFFTS spectrometers with a bandwidth of 2 GHz, the lines of $^{12}$CO, $^{13}$CO, and C$^{18}$O of $J$=1$-$0 or $J$=2$-$1 can be observed simultaneously for each beam. The control system is reconstructed on the ROS architecture, which is an open source framework for robot control, to enable a flexible observation mode and to handle a large amount of data. The framework is commonly used and maintained in a robotic field, and thereby reliability, flexibility, expandability, and efficiency in development are improved as compared with the system previously used. The receiver and control system are installed on the NANTEN2 telescope in December 2019, and its commissioning and science verification are on-going. We are planning to start science operation in early 2021.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا