Do you want to publish a course? Click here

Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration

85   0   0.0 ( 0 )
 Added by Alexandra Amon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work, together with its companion paper, Secco and Samuroff et al. (2021), presents the Dark Energy Survey Year 3 cosmic shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg$^2$ on the sky, divided into four redshift bins, we produce the highest significance measurement of cosmic shear to date, with a signal-to-noise of 40. We conduct a blind analysis in the context of the $Lambda$CDM model and find a 3% constraint of the clustering amplitude, $S_8equiv sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.759^{+0.025}_{-0.023}$. A $Lambda$CDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of $S_8= 0.772^{+0.018}_{-0.017}$ that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered $S_8$ values are lower than the high-redshift prediction by $2.3sigma$ and $2.1sigma$ ($p$-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the $S_8$ posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit $S_8$ by $0.5sigma$ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics.



rate research

Read More

This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter $S_8equivsigma_8sqrt{Omega_textrm{m}/0.3}$ at the 3% level in $Lambda$CDM: $S_8=0.759^{+0.025}_{-0.023}$ (68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the $Lambda$CDM analysis: $S_8=0.772^{+0.018}_{-0.017}$ (68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare our measurement with constraints from two other contemporary weak-lensing experiments: the Kilo-Degree Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES Y3 result under the assumption of $Lambda$CDM is found to be in statistical agreement with Planck 2018, although favors a lower $S_8$ than the CMB-inferred value by $2.3sigma$ (a $p$-value of 0.02). This paper explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than 0.3$sigma$ in the plane of $S_8timesOmega_textrm{m}$ caused by uncertainties in the theoretical models.
We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmology analyses, and provide usage notes aimed at the broad astrophysics community. Y3 Gold improves on previous releases from DES, Y1 Gold and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 Gold comprises nearly 5000 square degrees of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching S/N ~ 10 for extended objects up to $i_{AB}sim 23.0$, and top-of-the-atmosphere photometric uniformity $< 3$ mmag. Compared to DR1, photometric residuals with respect to Gaia are reduced by $50%$, and per-object chromatic corrections are introduced. Y3 Gold augments DES DR1 with simultaneous fits to multi-epoch photometry for more robust galaxy color measurements and corresponding photometric redshift estimates. Y3 Gold features improved morphological star-galaxy classification with efficiency $>98%$ and purity $>99%$ for galaxies with $19 < i_{AB} < 22.5$. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmology analysis samples. This paper will be complemented by online resources.
We use 26 million galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg$^2$ of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the flat $Lambda$CDM and $w$CDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photoz calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.782^{+0.027}_{-0.027}$ at 68% CL, which is a factor of 2.5 improvement over the fractional constraining power of our DES Science Verification results. In $w$CDM, we find a 4.8% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.777^{+0.036}_{-0.038}$ and a dark energy equation-of-state $w=-0.95^{+0.33}_{-0.39}$. We find results that are consistent with previous cosmic shear constraints in $sigma_8$ -- $Omega_m$, and see no evidence for disagreement of our weak lensing data with data from the CMB. Finally, we find no evidence preferring a $w$CDM model allowing $w e -1$. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.
We describe the creation, content, and validation of the Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support of upcoming cosmological analyses. The Y1A1 GOLD data set is assembled from multiple epochs of DES imaging and consists of calibrated photometric zeropoints, object catalogs, and ancillary data products - e.g., maps of survey depth and observing conditions, star-galaxy classification, and photometric redshift estimates - that are necessary for accurate cosmological analyses. The Y1A1 GOLD wide-area object catalog consists of ~137 million objects detected in coadded images covering ~1800 deg$^2$ in the DES grizY filters. The 10{sigma} limiting magnitude for galaxies is g = 23.4, r = 23.2, i = 22.5, z = 21.8, and Y = 20.1. Photometric calibration of Y1A1 GOLD was performed by combining nightly zeropoint solutions with stellar-locus regression, and the absolute calibration accuracy is better than 2% over the survey area. DES Y1A1 GOLD is the largest photometric data set at the achieved depth to date, enabling precise measurements of cosmic acceleration at z $lesssim$ 1.
We present a validation of the Dark Energy Survey Year 3 (DES Y3) $3times2$-point analysis choices by testing them on Buzzard v2.0, a new suite of cosmological simulations that is tailored for the testing and validation of combined galaxy clustering and weak lensing analyses. We show that the Buzzard v2.0 simulations accurately reproduce many important aspects of the DES Y3 data, including photometric redshift and magnitude distributions, and the relevant set of two-point clustering and weak lensing statistics. We then show that our model for the $3times2$-point data vector is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples, demonstrating robustness to uncertainties in the modeling of the non-linear matter power spectrum, non-linear galaxy bias and higher-order lensing corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration methodology, including information from photometry, spectroscopy, clustering cross-correlations, and galaxy-galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا