No Arabic abstract
This paper addresses the challenge of learning to do procedural reasoning over text to answer What if... questions. We propose a novel relational gating network that learns to filter the key entities and relationships and learns contextual and cross representations of both procedure and question for finding the answer. Our relational gating network contains an entity gating module, relation gating module, and contextual interaction module. These modules help in solving the What if... reasoning problem. We show that modeling pairwise relationships helps to capture higher-order relations and find the line of reasoning for causes and effects in the procedural descriptions. Our proposed approach achieves the state-of-the-art results on the WIQA dataset.
We introduce WIQA, the first large-scale dataset of What if... questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of What if...? multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies.
Understanding event and event-centered commonsense reasoning are crucial for natural language processing (NLP). Given an observed event, it is trivial for human to infer its intents and effects, while this type of If-Then reasoning still remains challenging for NLP systems. To facilitate this, a If-Then commonsense reasoning dataset Atomic is proposed, together with an RNN-based Seq2Seq model to conduct such reasoning. However, two fundamental problems still need to be addressed: first, the intents of an event may be multiple, while the generations of RNN-based Seq2Seq models are always semantically close; second, external knowledge of the event background may be necessary for understanding events and conducting the If-Then reasoning. To address these issues, we propose a novel context-aware variational autoencoder effectively learning event background information to guide the If-Then reasoning. Experimental results show that our approach improves the accuracy and diversity of inferences compared with state-of-the-art baseline methods.
Neural language models exhibit impressive performance on a variety of tasks, but their internal reasoning may be difficult to understand. Prior art aims to uncover meaningful properties within model representations via probes, but it is unclear how faithfully such probes portray information that the models actually use. To overcome such limitations, we propose a technique, inspired by causal analysis, for generating counterfactual embeddings within models. In experiments testing our technique, we produce evidence that suggests some BERT-based models use a tree-distance-like representation of syntax in downstream prediction tasks.
Incorporating relational reasoning into neural networks has greatly expanded their capabilities and scope. One defining trait of relational reasoning is that it operates on a set of entities, as opposed to standard vector representations. Existing end-to-end approaches typically extract entities from inputs by directly interpreting the latent feature representations as a set. We show that these approaches do not respect set permutational invariance and thus have fundamental representational limitations. To resolve this limitation, we propose a simple and general network module called a Set Refiner Network (SRN). We first use synthetic image experiments to demonstrate how our approach effectively decomposes objects without explicit supervision. Then, we insert our module into existing relational reasoning models and show that respecting set invariance leads to substantial gains in prediction performance and robustness on several relational reasoning tasks.